
Copyright 1999 - 2000
all rights reserved

Lesson 10

Work with Interfaces and Abstract Classes

Interfaces and Abstract Classes 10- 2

Lesson Objectives
Upon completion of this lesson you should be able to
•  Create an interface
•  Implement an interface with a class
•  Create an abstract class
•  Extend an abstract class with a concrete class

Interfaces and Abstract Classes 10- 3

What is an Interface

Person

Document

Order

Address

print()

print()

print()

print()

 If all these classes have a
print() method, and you want
to use polymorphism, what is the
common superclass?

 Use an Interface to capture shared

 behavior
 Use a superclass to capture

shared data

Interfaces and Abstract Classes 10- 4

Define an Interface
An interface
•  defines methods that one or more classes will

implement
•  is a way to define shared behavior
•  does not contain any implementation
•  may have final constants with values
•  is a contract between the designer and user

public interface Printable {
 public void print();

public class Person implements Printable {
 public void print(){….}

Interfaces and Abstract Classes 10- 5

Design with Interfaces
•  Application design can be more stable and flexible if

designed with interfaces
•  Determine desired behavior and put these methods

in an interface
•  Create object references that point to objects that

support that interface
•  Later implement the interface with an actual class

Interface: TimeTellable

Classes:
All implement
TimeTellable, but
all do it differently

Interfaces and Abstract Classes 10- 6

Example Designing
with Interfaces

public interface SpellChecker{
 public void getWord(String s);
 public String suggestWord();
}

public class WordProcessor {
 SpellChecker sp;
 sp = obj.getSpellChecker();
 sp.getWord(“someString”);
}

 Define desired
spellchecker behavior at
design time

 Can create an object
reference that points to
an object that
implements an interface

 Passes at compile time
 At runtime will need an

actual object that
implements
SpellChecker interface

Interfaces and Abstract Classes 10- 7

Polymorphism with Interfaces

Person implements Printable

Document implements Printable

Order implements Printable

Address implements Printable

print()

print()

print()

print()

public interface Printable {
 public void print();

aMethod(Printable p){
 p.print();
}

Any of these objects can
be passed to the
method to be printed

Interfaces and Abstract Classes 10- 8

Design with Interfaces

interface Flyable extends

 SelfDestructable{

 public void takeOff();
 public void crash();
 public void land();
}

interface SelfDestructable{
 public void blowUp();
}

interface Boatable extends
 SelfDestructable{

 public void skipSurface();
 public void sink();
}

public class JamesBondCar implements
 Flyable, Boatable{

 public void blowUp(){}
 public void takeOff(){}
 public void crash(){}
 public void land(){}
 public void skipSurface(){}
 public void sink(){}

public class Horsefly implements
 Flyable {

 public void takeOff(){}
 public void crash(){}
 public void land(){}
 public void blowUp(){};

public class Rock implements
 Boatable {

 public void blowUp(){}
 public void skipSurface(){}
 public void sink(){}

Interfaces and Abstract Classes 10- 9

What about Inheriting Data
and Methods?

Class Vehicle is never actually instantiated:
•  We would only instantiate a car, motorcycle or some

other concrete subclass
•  Vehicle can provide several benefits:

 1. Place to factor out common behavior and methods
 2. Place holder for empty methods that will have the

 implementation written in subclasses
 3. Enable polymorphism

Interfaces and Abstract Classes 10- 10

Defining Abstract Classes
in Java

•  Use the abstract keyword to declare a class as
abstract public abstract class AbstractVehicle {

 private String model;

 public String getModel()…

}

public class Car

 extends

AbstractVehicle{

private float trunkSize;
public float getTrunkSize(){…}

public class Motorcycle

 extends

AbstractVehicle{

 private int nbrBags;

 public int getNbrBags(){…}

Interfaces and Abstract Classes 10- 11

Define Abstract Methods
•  An abstract method must be overridden by a concrete

subclass
•  An abstract method is a place-holder method and

contains no code

public abstract class AbstractVehicle {
 // must be overridden in sublcasses

public abstract float calcMPG();
}

public class Motorcycle extends AbstractVehicle{
 // override from superclass

public float calcMPG(){…}
}

Interfaces and Abstract Classes 10- 12

Abstract Methods
•  An abstract method is one that cannot meaningfully be

implemented by a class
–  a generic operation - a place holder
–  part of an abstract class

•  Must be implemented by a concrete subclass
–  Each concrete subclass can implement the method

differently
•  An abstract method must be defined in an abstract

class

Interfaces and Abstract Classes 10- 13

Polymorphism with Abstract
Classes

•  Polymorphic collections can be defined using abstract
classes

public abstract class AbstractVehicle {
 public abstract float calcMPG();

 …

AbstractVehicle[] vehicles = {

 new Motorcycle(…),

 new Car(…), …

};

…

for (int i=0; i < vehicles.length; i++)

 if (vehicles[i].calcMPG()) …

Interfaces and Abstract Classes 10- 14

Using instanceof with
Interfaces

–  The instanceof operator can be used to check if
an object implements an interface

–  Downcasting can be used if necessary, to call
methods defined in the interface

public void aMethod(Object obj) {

 …

 if (obj instanceof Printable)

 ((Printable)obj).print();

}

Interfaces and Abstract Classes 10- 15

Summary
•  An interface is a compiler enforced contract between

the designer and user
•  An interface holds behavior that is implemented by

dissimilar classes
•  Interfaces support polymorphism
•  Abstract classes must be extended by a concrete

class to be instantiated

