
Essential Strategies, Inc. — 1 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

A COMPARISON OF DATA MODELING
TECHNIQUES

David C. Hay
Essential Strategies, Inc

October, 1999

[This is a revision of a paper by the same title written in 1995. In addition to stylistic
updates, this paper replaces all the object modeling techniques with the UML – a new
technique that is intended to replace at least all these.]

Peter Chen first introduced entity/relationship modeling in 1976 [Chen 1977]. It was a
brilliant idea that has revolutionized the way we represent data. It was a first version
only, however, and many people since then have tried to improve on it. A veritable
plethora of data modeling techniques have been developed.

Things became more complicated in the late 1980’s with the advent of a variation on
this theme called “object modeling”. The net effect of all this is that there are now
even more ways to model the structure of data. This article is intended to present the
most important of these and to provide a basis for comparing them with each other.

Regardless of the symbols used, data or object modeling is intended to do one thing:
describe the things about which an organization wishes to collect data, along with the
relationships among them. For this reason, all of the commonly used systems of
notation fundamentally are convertible one to another. The major differences among
them are aesthetic, although some make distinctions that others do not, and some do
not have symbols to represent all situations.

This is true for object modeling notations as well as entity/relationship notations.

There are actually three levels of conventions to be defined in the data modeling arena:
The first is syntactic, about the symbols to be used. These conventions are the
primary focus of this article. The second defines the organization of model diagrams.
Positional conventions dictate how entities are laid out. These will be discussed at the
end of the article. And finally, there are conventions about how the meaning of a
model may be conveyed. Semantic conventions describe standard ways for
representing common business situations. These are not discussed here, but you can
find more information about them in books by David Hay [1996] and Martin Fowler
[1997]

These three sets of conventions are, in principle, completely independent of each
other. Given any of the syntactic conventions described here, you can follow any of
the available positional or semantic conventions. In practice, however, promoters of

Essential Strategies, Inc. — 2 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

each syntactic convention typically also promote at least particular positional
conventions.

In evaluating syntactic conventions, it is important to remember that data modeling has
two audiences. The first is the user community, that uses the models and their
descriptions to verify that the analysts in fact understand their environment and their
requirements. The second audience is the set of systems designers, who use the
business rules implied by the models as the basis for their design of computer systems.

Different techniques are better for one audience or the other. Models used by analysts
must be clear and easy to read. This often means that these models may describe less
than the full extent of detail available. First and foremost, they must be accessible by a
non-technical viewer. Models for designers, on the other hand must be as complete
and rigorous as possible, expressing as much as possible.

The evaluation, then, will be based both on the technical completeness of each
technique and on its readability.

Technical completeness is in terms of the representation of:

• Entities and attributes

• Relationships

• Unique identifiers

• Sub-types and super-types

• Constraints between relationships

A technique’s readability is characterized by its graphic treatment of relationship lines
and entity boxes, as well as its adherence to the general principles of good graphic
design. Among the most important of the principles of graphic design is that each
symbol should have only one meaning, which applies where ever that symbol is used,
and that each concept should be represented by only one symbol. Moreover, a
diagram should not be cluttered with more symbols than are absolutely necessary, and
the graphics in a diagram should be intuitively expressive of the concepts involved..
[See Hay 98.]

Each technique has strengths and weakness in the way it addresses each audience. As
it happens, most are oriented more toward designers than they are toward the user
community. These produce models that are very intricate and focus on making sure
that all possible constraints are described. Alas, this is often at the expense of
readability.

This document presents seven notation schemes. For comparison purposes, the same
example model is presented using each technique. Note that the UML is billed as an
“object modeling” technique, rather than as a data (entity/relationship) modeling

Essential Strategies, Inc. — 3 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

technique, but as you will see, its structures is fundamentally the same. This
comparison is in terms of each technique’s symbols for describing entities (or “object
classes”, for the UML), attributes, relationships (or object-oriented “associations”),
unique identifiers, sub-types and constraints between relationships. The following
notations are presented here:

• Peter Chen’s original entity/relationship diagrams

• Information Engineering

• Richard Barker’s notation, used by the Oracle Corporation

• IDEF1X

• Object Role Modeling

• The Unified Modeling Language (UML)

• The Extensible Markup Language (XML)

At the end of the individual discussions is your author’s argument in favor of Mr.
Barker’s approach for use in requirements analysis, along with his argument in favor of
UML to support design.

CHEN

Peter Chen invented entity/relationship modeling in the mid-1970’s [Chen 1977], and
his approach remains widely used today. It is unique in its representation of
relationships and attributes. Relationships are shown with a separate diamond-shaped
symbol on the relationship line, and attributes are shown in separate circles, instead of
annotations on each entity.

A sample model, representing Chen’s method, is shown in Figure 1. This same
example will be used to demonstrate all the techniques that follow. The model shows
entities, attributes, and relationships. It also has examples of both a super-type/sub-
type combination and a constraints between relationships.

In the diagram, each PURCHASE ORDER is related to a single PARTY, and is related to
one or more examples of either one PRODUCT or one SERVICE.

The diagram also includes two entities (EVENT and EVENT CATEGORY) in an unusual
relationship. In most “one-to-many” relationships, the “one” side is mandatory (“...
must be exactly one”), while the “many” side is optional (“... may be one or more”).
In this example, the reverse is true: Each EVENT may be in one and only one EVENT

CATEGORY (zero or one), and each EVENT CATEGORY must be a classification for one
or more EVENTS (one or more). That is, EVENTS may exist without being classified, or

Essential Strategies, Inc. — 4 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

they may be in one and only one category. An EVENT CATEGORY can come into
existence, however, only if there is at least one event to put into it.

EVENT-TYPE

PURCHASE-
ORDER

ORGANI-
ZATION

PERSON

PARTY-
ORDER

SERVICEPRODUCT

QUAN-
TITY

ACTUAL
PRICE

LINE
NUMBER

PO
NUMBER

NAME
PARTY

ID

ORDER
DATE

ORDER-
LINE PARTY

MISSIONSUR-
NAME

SERVICE
ID

STAN-
DARD
UNIT

PRICE

STAN-
DARD
UNIT

PRICE

PRO-
DUCT
CODE

CLASSIFI-
CATION

CODE

DES-
CRIP-
TION CODE

DES-
CRIP-
TION

EVENT

(1,)1(0) n(0,) n

(1,) 1

(1,) n (0,)1

ISA

ISA

CATALOGUE
ITEM

Figure 1: A Chen Model

Essential Strategies, Inc. — 5 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Entities and attributes

Entities are represented by square-cornered boxes, with their attributes hanging off of
them in circles. An entity’s name appears inside the rectangle, and an attribute’s name
appears inside the circle. There are no special marks to indicate whether attributes are
mandatory or optional, or if they participate in the entity’s unique identifier.

Names of entities and attributes are common terms, and in multi-word names, the
words are separated by hyphens.

Relationships

Mr. Chen’s notation is unique among the techniques shown here in that a relationship
is shown as a two-dimensional symbol — a rhombus on the line between two or more
entities.

Note that this relationship symbol makes it possible to maintain a “many-to-many”
relationship without necessarily converting it into an associative or intersect entity. In
effect, the relationship itself is playing the role of an associative entity. The
relationship itself is permitted to have attributes. Note how “quantity”, “actual price”,
and “line number” are attributes of the relationship Order-line in Figure 1.

Note also that relationships do not have to be binary. As many entities as necessary
may be linked to a relationship rhombus.

Cardinality/optionality

In Mr. Chen’s original work, only one number appeared at each end, showing the
maximum cardinality. That is, a relationship might be “one to many”, with a “1” at
one end and a “n” at the other. This would not indicate whether or not an
occurrence of an entity had to have at least one occurrence of the other entity.

In most cases, an occurrence of an entity that is related to one occurrence of
another must be related to one, and an occurrence of an entity that is related to
more than one may be related to none, so most of the time the lower bounds can
be assumed. The EVENT/EVENT CATEGORY model, however, is unusual. Having
just a “1” next to EVENT showing that an EVENT is related to one EVENT CATEGORY

would not show that it might be related to none. The “n” which shows that each
EVENT CATEGORY is related to more than one EVENT would not show that it must
be related to at least one.

For this reason, the technique can be extended to use two numbers at each end to
show the minimum and maximum cardinalities. For example, the relationship
party-order between PURCHASE ORDER and PARTY, shows 1,1 at the PURCHASE

Essential Strategies, Inc. — 6 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

ORDER end, showing that each PURCHASE ORDER must be with no less than one
PARTY and no more than one PARTY. At the other end, “0,n” shows that a PARTY

may or may not be involved with any PURCHASE ORDERS, and could be involved
with several. The EVENT/EVENT CATEGORY model would have “0,1” at the EVENT

end, and “1,n” at the EVENT CATEGORY end.

In an alternative notation, relationship names may be replaced with “E” if the
existence of occurrences of the second entity requires the existence of a related
occurrence of the first entity.

Names

Because relationships are clearly considered objects in their own right, their
names tend to be nouns.

The relationship between PURCHASE-ORDER and PERSON or ORGANIZATION, for
example, is called order-linE. Sometimes a relationship name is simply a
concatenation of the two entity names. For example party-order relates PARTY

and PURCHASE ORDER.

Entity and relationship names may be abbreviated.

Unique identifiers

A unique identifier is any combination of attributes and relationships that uniquely
identify an occurrence of an entity.

While Mr. Chen recognizes the importance of attributes as entity unique identifiers
[Chen 1977, 23], his notation makes no provision for showing this. If the unique
identifier of an entity includes a relationship to a second entity, he replaces the
relationship name with “E”, makes the line into the dependent entity an arrow, and
draws a second box around this dependent entity. (Figure 2 shows how this would
look if the relationship to PARTY were part of the unique identifier of PURCHAS-
ORDER). This still does not identify any attributes that are part of the identifier.

PURCHASE-
ORDER E PARTY

(1,)1(0) n

Figure 2: Existence Dependent Relationship

Essential Strategies, Inc. — 7 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Sub-types

A sub-type is a subset of the occurrences of another entity, its super-type. That is, an
occurrence of a sub-type entity is also an occurrence of that entity’s super-type. An
occurrence of the super-type is also an occurrence of exactly one or another of the
sub-types.

Though not in Mr. Chen’s original work, this extension is described By Robert Brown
[1993] and Mat Flavin [1981].

In this extension, sub-types are represented by separate entity boxes, each removed
from its super-type and connected to it by an “isa” relationship. (Each occurrence of a
sub-type “is a[n]” occurrence of the super-type.) The relationship lines are linked by a
rhombus and each relationship to a sub-type has a bar drawn across it. In Figure 1, for
example, PARTY is a super-type, with PERSON and ORGANIZATION as its sub-types.
Thus an order-line must be either a PRODUCT or a SERVICE. This isn’t strictly correct,
since an order line is the fact that a PRODUCT or a SERVICE was ordered on a
PURCHASE-ORDER. It is not the same thing as the PRODUCT or SERVICE themselves.

Constraints between relationships

The most common case of constraints between relationships is the “exclusive or”,
meaning that each occurrence of the base entity must (or may) be related to
occurrences of one other entity, but not more than one. These will be seen in most of
the techniques which follow below.

Mr. Chen does not deal with constraints directly at all. This must be done by defining
an artificial entity and making the constrained entities into sub-types of that entity.
This is shown in Figure 1 with the entity CATALOGUE ITEM, with its mutually exclusive
sub-types PRODUCT and SERVICE. Each PURCHASE ORDER has an order-line
relationship with one CATALOGUE ITEM, where each CATALOGUE ITEM must be either a
PRODUCT or a SERVICE.

Comments

Mr. Chen was first, so it is not surprising that his technique does not express all the
nuances that have been included in subsequent techniques. It does not annotate
characteristics of attributes, and it does not show the identification of entities without
sacrificing the names of the relationships.

While it does permit showing multiple inheritance and multiple type hierarchies, the
multi-box approach to sub-types takes up a lot of room on the drawing, limiting the
number of other entities that can be placed on it. It also requires a great deal of space
to give a separate symbol to each attribute and each relationship. Moreover, it does

Essential Strategies, Inc. — 8 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

not clearly convey the fact that an occurrence of a sub-type is an occurrence of a
super-type.

INFORMATION ENGINEERING

 “Information Engineering” was originally developed by Clive Finkelstein in Australia
the late 1970’s. He collaborated with James Martin to publicize it in the United States
and Europe [Martin & Finkelstein 1981], and then Martin went on from there to
become predominantly associated with it [Martin & McClure, 1985]. Mr. Finkelstein
later published his own version [Finkelstein 1989] and [Finkelstein 1992]. Because of
the dual origin of the techniques, there are minor variations between Mr. Finkelstein’s
and Mr. Martin’s notations The Information Engineering version of our test case (with
some of the notations from each version) is shown in Figure 3.

In the example, each PARTY is vendor in zero, one, or more PURCHASE ORDERS, each
of which initially has zero, one or more LINE ITEMS, but eventually it must have at least
one LINE ITEM. Each LINE ITEM, in turn, is for either exactly one PRODUCT or exactly
one SERVICE.

PURCHASE
ORDER

LINE
ITEM

PARTY

PERSON ORGANIZATION

PRODUCT SERVICE EVENT EVENT
CATEGORY

IS IN

HAS IS VENDOR IN

IS TO

IS
FOR

IS ON

CLASSIFIES

IS IN

Figure 3: An Information Engineering Model

Entities and attributes

Mr. Finkelstein defines entity in the designer’s sense of representing “data to be stored
for later reference”. [Finkelstein 1992, 23] Martin, however, adopts the analyst’s
definition that “an entity is something (real or abstract) about which we store data.”
[Martin & McClure 1985, 249]

Entities are shown in square-cornered rectangles. An entity’s name is inside its
rectangle. Attributes are not shown at all. Mr. Finkelstein shows them in a separate
document, the “entity list”. Mr. Martin has another modeling technique, called

Essential Strategies, Inc. — 9 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

“bubble charts”, specifically for modeling attributes, keys, and other attribute
characteristics.

Names of entities are common terms, and the words in multi-word names are
separated by spaces.

Relationships

Relationships are shown as solid lines between pairs of entities, with symbols on each
end to show cardinality and optionality.

Cardinality/optionality

Each relationship in Information Engineering has two halves, with each half
described by one or more symbols. If an occurrence of the first entity may or may
not be related to occurrences of the second, a small open circle appears near the
second entity. If it must have at least one occurrence of the second, a short line
crosses the relationship line instead. If an occurrence of the first entity can be
related to no more than one of the second entity (“one and only one”), another
short line crosses the relationship. If it can be related to more than one of the
second entity (“one or more”), a crow’s foot is put at the intersection of the
relationship and the second entity box.

For example, in Figure 3, a PARTY is vendor in zero, one, or more PURCHASE

ORDERS. A PURCHASE ORDER, on the other hand, is to one and only one (1,1)
PARTY.

Mr. Finkelstein has a unique notation, shown in the Figure. Note that each
PURCHASE ORDER initially may have one or more LINE ITEMS, but eventually it must
have at least one. That is, it is possible to create a PURCHASE ORDER without
having to fill in the line items immediately, but at least one must be added later.
The bar across the line between the circle and the crow’s foot shows this.

Names

Mr. Martin names relationships with verbs, often only in one direction. Mr.
Finkelstein doesn’t name relationships at all.

Unique identifiers

Unique identifiers are not represented in an Information Engineering data model. Mr.
Martin shows them separately in “bubble diagrams”.

Essential Strategies, Inc. — 10 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Sub-types

Mr. Martin represents sub-types as separate entity boxes, each removed from its
super-type and connected to it by an “isa” relationship. (Each occurrence of a sub-
type “is a[n]” occurrence of the super-type.) This is shown in the figure. Mr
Finkelstein portrays them as separate boxes, with a linked with “isa” relationship lines.

Constraints between relationships

In Information Engineering notation, a constraint between relationships is shown by
the relationship halves of the three (or more) entities involved meeting at a small circle.
If the circle is solid, the relationship between the relationships is “exclusive or”,
meaning that each occurrence of the base entity must (or may) be related to
occurrences of one other entity, but not more than one. This is shown in the Figure
where each LINE ITEM is for either one PRODUCT or is for one SERVICE, but not both.
If the circle is open, it is an “inclusive or” relationship, meaning that an occurrence of
the base entity must (or may) be related to occurrences of one, some, or all of the
other entities.

Comments

Information Engineering is widely practiced. It is reasonably concise and attractive,
consistent, and has a minimum of clutter. It is, however, missing important notations
for attributes and unique identifiers. Mr. Martin’s approach to sub-types is compact
and therefore desirable it models are to be presented to the non-technical community.
Mr. Finkelstein’s notation for “initially may be but eventually must be is a very
ingenious solution to a common modeling situation, not found in any other notation.

 RICHARD BARKER

The next notation was originally developed by the British consulting company CACI.
It was subsequently promoted by Richard Barker [Barker 1990] and adopted by the
Oracle Corporation for it’s “CASE*Method” (subsequently renamed the “Custom
Development Method”). Figure 4 shows our example, as represented in this notation.
In the diagram, each PURCHASE ORDER must be issued to a PARTY, and may be
composed of one or more LINE ITEMS, each of which in turn must be for either one
PRODUCT or one SERVICE.

Entities and attributes

Entities in Barker’s notation are shown as round cornered rectangles. Attributes may
be displayed inside the entity boxes.

Essential Strategies, Inc. — 11 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Officially, attributes are shown with small open circles for optional attributes, solid
circles for required attributes, and hash marks (#) for attributes which participate in
unique identifiers. Often in practice, however, (and throughout this book), dots are
used for all required and optional attributes not in a unique identifier.

Relationships

Relationships are shown as lines, with each half solid or dashed, depending on whether
that part of the relationship is mandatory or not. The presence or absence of a crow’s
foot on each end shows that end as referring to, respectively, up to many, or no more
than one occurrence of that entity. Naming conventions allow the relationship at each
end to be read as a concise, disciplined, but easy-to-understand sentence.

Cardinality/optionality

Relationships are in two parts, one representing the relationship going in each
direction. In a relationship half, different symbols address the upper and lower
boundaries of the relationship: A dashed line near the first, subject, entity shows
that the relationship is optional and means “zero or more” (read as “may be”), and
a solid line represents a mandatory relationship and means “at least one” (read as
“must be”). A “crows foot” next to the second, object, entity represents “up to
many” (read as “one or more”), while no crow’s foot represents “up to one” (read
as “one and only one”).

Essential Strategies, Inc. — 12 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

vendor
in

issued to

composed
of

part of

forfor

bought
via

bought
via

in

a classification
for

PERSON

ORGANI-
ZATION

Party ID
. Name

PURCHASE
ORDER
PO number
. Order date

LINE ITEM
Line number
. Quantity
. Actual price

PRODUCT SERVICE
Product code
. Description
. Unit price

Service ID
. Description
. Rate per hour

EVENT EVENT
CATEGORY

Code
. Description

Code
. Description

Figure 4: A CASE*Method Data Model

Names

The Barker notation is unique in the way it names relationships. Relationship
names are prepositions or prepositional phrases, so that normal and meaningful
English sentences can be constructed from them. The sentences are of the
structure:

Each
<entity 1>
{must be | may be} (If the line is solid or dashed)
<relationship>
{one or more | one and only one} (If there is or is not a crow’s

foot)
<entity 2>
.

For example, in Figure 4, “Each PARTY may be a vendor in one or more PURCHASE

ORDERS,” and “Each PURCHASE ORDER must be issued to one and only one
PARTY.”

Unique identifiers

A unique identifier is defined to be any combination of attributes and relationships
which uniquely identifies an occurrence of an entity. Attributes which are parts of the

Essential Strategies, Inc. — 13 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

definition of a unique identifier are shown preceded by hash marks (#). Relationships
which are part of the definition of a unique identifier are marked by a short line across
the relationship near the entity being identified.

For example, in Figure 4, the unique identifier of LINE ITEM is a combination of the
attribute “line number” and the relationship “part of one and only one PURCHASE

ORDER.” Since the marked relationship represents the fact that each LINE ITEM is
partly identified by a particular PURCHASE ORDER, it implies that the PURCHASE

ORDER’S unique identifier “PO number” participates in identification of the LINE ITEM

as well. When implemented, a column derived from “PO number” will be generated in
the table derived from LINE ITEM. It will serve as a foreign key to the table derived
from PURCHASE ORDER, and will be part of the primary key of the table that is derived
from LINE ITEM.

Note that Mr. Barker’s notation distinguishes the unique identifier in the conceptual
model from the “primary key” which identifies rows in a physical table. The unique
identifier is shown, while the primary key is not. Similarly, since a foreign key is
simply the implementation of a relationship, it is not shown explicitly here either.

Sub-types

Barker’s notation shows sub-types as boxes inside super-type boxes. This has the
advantage of taking up much less room on the diagram, and it emphasizes the fact that
an occurrence of a sub-type is an occurrence of the super-type. The super- and sub-
types are not simply related to each other.

In Barker’s notation, sub-types are mutually exclusive, meaning that overlapping sub-
types are not allowed. Subtypes are also complete, meaning that sub-types are
supposed to account for all occurrences of a super-type, although in practice, this
latter rule is often bent by adding the sub-type OTHER . . . In Figure 4, PERSON and
ORGANIZATION are sub-types of PARTY.

Constraints between relationships

The only constraint between relationships available in Mr. Barker’s notation is the
“exclusive or”. An arc across two relationships represents the fact that each
occurrence of an entity may be (or must be) related to occurrences of one or more
other entities, but not more than one. For example, Figure 4 shows that each LINE

ITEM must be either for one PRODUCT, or for one SERVICE.

Comments

Several things distinguish this notation from those described elsewhere. These are
factors that make the Barker technique the most desirable to use in a requirements

Essential Strategies, Inc. — 14 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

analysis project. The technique results in models that are much better for presenting to
the public at large than those produced by any other.

First, this notation uses relatively few distinct symbols. There is only one kind of
entity. Whether it is a role, an interaction, or another kind of association between two
entities, it is represented by the same round cornered rectangle. The full range of
relationship types is shown by line halves, which may be solid or dashed, and with the
presence or absence of a crow’s foot on each end. Unique identifiers, where it is
important to show them, are shown by either the hash marks next to an attribute, or a
small mark across a relationship line, and dependency is implied by the use of a
relationship in a unique identifier. Other notations are, to varying degrees, more
complicated than that.

Attributes may be shown with indicators of their optionality.

Second, sub-types are shown as entities inside other entities. Most other notations
place sub-types outside the super-type, connected to it with “isa” relationship lines.
This takes up much more space on a diagram, and does not convey as emphatically the
fact that an occurrence of a sub-type is an occurrence of the super-type.

Third, Barker’s notation permits “exclusive or” constraints between relationships,
which show that an occurrence of one entity may be related to occurrences of either of
two or more other entities. This is more than is available in some notations, and less
than is available in others.

The last, and perhaps the most important thing to distinguish this technique from the
others is a rigorous naming standard for relationships. Relationship names are
prepositions, not verbs. A little reflection should reveal why this is appropriate, since
it is the preposition in English grammar, not the verb, that denotes a relationship.
(Verbs suggest functions, which are featured in other kinds of models.) The implied
verb in every relationship sentence is “to be”, expressed as either “must be” or “may
be”.

Note that in the examples of notations without this discipline, the verbs often are “is”
anyway.

This use of prepositions makes it possible to use common English sentences to
represent relationships completely. It is not always easy to come up with just the right
word, but the exercise of trying to do so significantly improves your understanding of
the true nature of the relationship.

This discipline could certainly be followed with the other techniques, but none of the
books your author has found to describe these techniques endorse it.

Essential Strategies, Inc. — 15 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

IDEF1X

IDEF1X is a data modeling technique that is used by many branches of the United
States Federal Government. [See Bruce 1992.] The IDEF1X version of the sample
model is shown in Figure 5.

PARTY

party-id

name
person-
organization-type

PURCHASE
ORDER
PO-number

party-id (FK)
order-date

CATALOGUE-
ITEM
item number

description
product-service-flag

LINE-ITEM
PO-number (FK)
line-number
item-number (FK)
quantity
actual-price

PERSON

party-id (FK)

surname

ORGANIZATION

party-id (FK)

corporate-mission

PRODUCT
product-code
item-number (FK)

unit-price

SERVICE
service-ID
item-number (FK)

rate-per-hour

PARTY

party-id

name
person-
organization-type

PARTY

party-id

name
person-
organization-type

P

is to

is vendor in

is in

has

is foris on

is in

classifies

product-
service-flag

person-
organization-type

Figure 5: An IDEF1X Model

Entities and Attributes

Entities are shown by round-cornered or square-cornered rectangles. Round cornered
rectangles represent “dependent” entities — those whose unique identifier includes at
least one relationship to another entity. “Independent” entities, whose identifiers are
not derived from other entities, are shown with square corners.

The name of the entity appears outside the box. The box is divided, with identifying
attributes (again, the primary key) above the division and non-identifying attributes
below.

In multi-word entity names, the words may be separated by hyphens, underscores, or
blanks.

Essential Strategies, Inc. — 16 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Relationships

In IDEF1X, relationships are asymmetrical: different symbols for optionality are used,
depending on the relationship’s cardinality. Unlike the other notations, symbols
cannot be parsed in terms of optionality and cardinality independently. Each set of
symbols describes a combination of the optionality and cardinality of the entity next
to it.

In addition to a relationship line from an entity, the foreign key that would implement
the line in a relational database design is shown as an attribute of that entity.

If a relationship is part of an entity’s unique identifier, it is shown as a solid line; if
not, it is shown as a dashed line.

Table 1 shows, for IDEF1X and the Barker notation, all the possible combinations of
cardinality and optionality on both ends of the relationship.

Cardinality/Optionality

As seen in the table, optionality is shown differently for the “many” and the “one”
sides of a relationship. Most of the time, a solid circle next to an entity means
zero, one or more occurrences of that entity. If there is no other symbol next to
the entity on this “many” side of a relationship, the relationship is optional. See
lines 1-3, and 7 in Table 1. That is, the solid circle stands for zero, one or more
(“may be . . . one or more”) if it is by itself. Adding the letter P makes the
relationship mandatory (meaning “must be one or more”)*. Adding a “1” also
makes the relationship mandatory, but this changes the cardinality of the
relationship to one. It changes the meaning of the solid circle from “may be one or
more” to “must be one and only one”. (See lines 4-6, 8, and 10 in the Table.)
Adding the letter Z keeps the relationship optional, but that changes the cardinality
of the solid circle to “. . . one and only one”.

So a solid circle may mean “must be” or “may be”, and it may mean “one or more”
or “one and only one”, depending on the other symbols around it. That is to say,
the solid circle does not convey any inherent meaning in itself.

Absence of a solid circle next to an entity means that only one occurrence of that
entity is involved (“one and only one”). If there is no symbol next to the entity on
the “one” side of the relationship, the entity is mandatory (“must be one and only
one”), as shown in lines 1,2,4,5, 11-12, 14-15, 17 and 18.

* “P” may be replaced by a specific number to specify exacly how many B’s are required for each

A. “P” stands for “positive” as in “any positive (non-zero) number” (not as in “I am positive that
something should be there”).

Essential Strategies, Inc. — 17 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Placing a small diamond symbol next to the entity means that the other entity in the
relationship may be related to one and only one occurrence (“zero or one”) of that
entity. (See lines 3, 6, 16 and 19.) This then is an alternative way to to specify an
optional one and only one occurrence an entity. We saw above that you could also
use a solid circle with a letter Z under it (See lines 21-24.)

Since the solid circle — which usually represents “may be one or more” — always
appears on the “many” side of a relationship, the use of the solid circle in a many
to many relationship makes each end optional. Adding the letter “P” on one or
both ends makes the end so modified mandatory. (See lines 7 through 10.)

The two ways of showing that an occurrence of one entity “must be” related to a
single occurrence of another mean that there are four different ways to represent a
mandatory one to one relationship. These are shown in lines 11-14. Similarly,
optional one to one relationships can be shown in four different ways, as shown in
lines 21-24. One to one relationships that are partly optional and partly mandatory
can be shown in two ways, depending on which way the model is oriented, as
shown in lines 15-18.

NOTE: The variations in notation above, which have no meaning in the conceptual
model turn out to be significant in the physical design. The difference between
representations for “may be one and only one” has to do with the fact that the
diamond implies an optional foreign key in the opposite entity, while the circle with
the z simply says that there may or may not be a child occurrence. In the other
cases of multiple representation of the same concept (11-14, 15-16, 17-18, and 21-
24), the culprit is again physical implementation. Each of the different symbol sets
is implemented in a different way. Indeed, some of the symbol combinations
cannot be implemented as expressed.

In other words, the symbols are deeply linked to the implementation of the tables,
not the logic of the situation. Thus, IDEF1X is fundamentally a physical database
design modeling technique, not one appropriate for doing conceptual design.

Names

A relationship name is a verb or verb phrase, where multiple words are separated
by spaces. Relationships are identified in both directions.

Essential Strategies, Inc. — 18 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Barker’s Notation IDEF1X Notation Barker Description
IDEF1X

Description

1 B A B A
Each A may be . . . one or

more B’s. Each B must be .
. . one and only one A.

(A partially identifies B.)

One to zero or
more

(dependent)

2 B A B A
Each A may be . . . one or

more B’s. Each B must be .
. . one and only one A.

One to zero or
more

3 B A B A
Each A may be . . . one or

more B’s. Each B may be .
. . one and only one A.

Zero or one to
zero or more

4 B A B A
P

Each A must be . . . one or
more B’s. Each B must be .

. . one and only one A.

One to one or
many

5 B A B A
P

Each A must be . . . one or
more B’s. Each B must be .
. . one and only one A. (A

partially identifies B.)

One to one or
many

(dependent)

6 B A B A
P

Each A must be . . . one or
more B’s. Each B may be .

. . one and only one A

One to zero or
many

7 B A B A
Each A may be . . . one or
more B’s. Each B may be

 . . . one or more A’s

Zero or many
to zero or

many

8 B A B A
P P

Each A must be . . . one or
more B’s. Each B must be .

. . one or more A’s.

One or many
to one or

many

9 B A B A
P

Each A may be . . . one or
more B’s. Each B must be .

. . one or more A’s.

Zero or many
to one or

many

10 B A B A
P

Each A must be . . . one or
more B’s. Each B may be .

. . one or more A’s.

One or many
to zero or

many

Table 1: Comparison of Barker’s and IDEF1X Notations
(“...” represents the relationship name.)

Essential Strategies, Inc. — 19 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Barker’s Notation IDEF1X Notation Barker’s Description
IDEF1X

Description

11 B A B A
1

Each A must be . . . one and
only one B. Each B must be

. . . one and only one A.

One to one

12 (Same as 11) B A
1

(Same as 11)

13 (Same as 11) B A
11

(Same as 11)

14 (Same as 11) B A (Same as 11)

15 B A B A
1

Each A must be . . . one and
only one B. Each B must be
. . . one and only one A. (B
partially dependent on A.)

One to one
(dependent)

16 (Same as 15) B A (Same as 15)

17 B A B A
1

Each A must be . . . one and
only one B. Each B may be

. . . one and only one A.

Zero or one to
one

18 (Same as 16) B A (Same as 16)

19 B A B AZ

Each A may be . . . one and
only one B. Each B must be

. . . one and only one A.

One to zero or
one

20 B A B AZ

Each A may be . . . one and
only one B. Each B must be
. . . one and only one A. (A

partially identifies B.)

One to zero or
one

(dependent)

Table 1: Comparison of Barker’s and IDEF1X Notations, continued
(“...” represents the relationship name.)

Essential Strategies, Inc. — 20 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Barker’s Notation IDEF1X Notation Barker’s Description
IDEF1X

Description

21 B A B AZ

Each A may be . . . one and
only one B. Each B may be

. . . one and only one A.

Zero or one to
zero or one

22 (Same as 19) B A
Z

(Same as 19)

23 (Same as 19) B AZ Z
(Same as 19)

24 (Same as 19) B A (Same as 19)

Table 1: Comparison of Barker’s and IDEF1X Notations,
continued (“...” represents the relationship name.)

Unique identifiers

As stated above, a unique identifier is represented in IDEF1X by the primary key
which will implement it in a relational data base. Since all relationships are shown by
foreign key attributes, the primary key may consist of any combination of foreign key
and non-foreign-key attributes. If a foreign key is present in the unique identifier
primary key, then the otherwise dashed relationship line becomes solid, and the entity
box acquires round corners.

Sub-types

IDEF1X shows sub-types as separate entity boxes, each removed from its super-type
and connected to it by an “isa” relationship. (Each occurrence of a sub-type “is a[n]”
occurrence of the super-type.)

There are two kinds of sub-types. In Figure 5, the circle with two horizontal lines
under it is a complete sub-typing arrangement: all occurrences of the parent must be
occurrences of one or the other sub-type. A circle with only one horizontal line below
it is an incomplete sub-typing arrangement: the sub-types do not represent all possible
occurrences of the super-type.

All sub-types extending from a single sub-type symbol are mutually exclusive. Sub-
types may be shown to be not mutually exclusive by being descended from different
sub-type symbols attached to the same super-type entity.

Essential Strategies, Inc. — 21 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

In IDEF1X, the unique identifier of the sub-type must always be identical to the
identifier of the super-type. This point is reinforced by including the foreign key
(“(FK)”) designator next to the unique identifier of the sub-type, referring to the
unique identifier of the super-type. Optionally, a “role name” may be appended to the
front of the foreign key name in the sub-type. In Figure 5, the role names “product-
code” and “service-id” are roles, appended to “item number” for the primary keys of
PRODUCT and SERVICE. Note that since the keys themselves remain identical to the
key of the super-type, appending role names does not change their format in any way.

An attribute used to discriminate between the sub-types is placed next to the sub-type
symbol. For example, “person-organization-type” is shown in Figure 5, above, to
distinguish between occurrences of PERSON and ORGANIZATION.

Constraints between relationships

IDEF1X does not have an explicit way to represent constraints between relationships.
Instead of saying “A” is related to “B” or to “C”, it is necessary to define an entity,
“D”, and then use the sub-type notation. Thus you would say “A” is related to “D”,
which must be either a “B” or a “C”.

The ability to express exhaustiveness and exclusivity in sub-types does carry over to
this situation.

 This is shown in Figure 5 with the creation of CATALOGUE ITEM, as a super-type of
PRODUCT and SERVICE.

Comments

IDEF1X symbols do not map cleanly to the concepts they are supposed to model. A
concept that should be represented by a single symbol requires several together and it
requires different symbols under different circumstances. That is, particular situations
can be represented by more than one set of symbols, while the same symbol can mean
different things, depending on context. Which symbol is used to describe a particular
situation is heavily dependent on the context of that situation and on how the
relationship will be implemented, not just on the situation itself.

For example, the symbol to be used for optionality depends on the cardinalty of the
relationship. The solid circle symbol can mean anything, depending on its setting.
Similarly, a cardinality/optionality combination may be represented in different ways.
This is because what is being represented is not a conceptual structure, but an
implementation method.

The effect of all this is that it is prohibitively difficult to teach a non-technical viewer
to read an IDEF1X diagram.

Essential Strategies, Inc. — 22 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

A dominant graphic feature of any relationship line is its being solid or dashed.
Barker’s notation uses this feature to distinguish between relationships that are
required and those that are not. Among those relationships that are, those
participating in a unique identifier may be simply marked with an extra line across
them, but this level of detail is often not required.

In IDEF1X, however, the solidity of a line describes the participation of one entity in
the unique identifier (primary key) of the other. This requires the analyst to begin h’
efforts by analyzing dependency — before addressing the optionality or cardinality of
the model’s relationships.

In a real modeling situation, however, an analyst in fact normally starts by examining
which entities are required for which other entities, and how many occurrences are
involved. The details of keys or identifiers are typically not addressed until much later.

And corrections to the model are unnecessarily difficult: If you make a single error in
cardinality or optionality (say the one to one mandatory relationship should really be
optional), then several symbols must be changed.

While it does permit showing multiple inheritance and multiple type hierarchies, the
multi-box approach to sub-types takes up a lot of room on the drawing, limiting the
number of other entities that can be placed on it. It also requires a great deal of space
to give a separate symbol to each attribute and each relationship. Moreover, it does
not clearly convey the fact that an occurrence of a sub-type is an occurrence of a
super-type.

IDEF1X may be a good modeling tool to use as the basis for data base design, but it
does not follow the rules of good graphic design (as described in the introduction to
this article, above), making it unnecessarily difficult to learn and difficult to use as a
tool for analyzing business requirements jointly with users.

OBJECT ROLE MODELING (ORM)

NIAM was originally an acronym for “Nijssen's Information Analysis Methodology”,
but more recently, since G. M. Nijssen was only one of many people involved in the
development of the method, it was generalized to “Natural language Information
Analysis Method”. Indeed, practitioners now also use a still more general name,
“Object-role Modeling”, or ORM. [Halpin 1995*]

ORM takes a different approach from the other methods described here. Rather than
representing entities as analogs of relational tables, it shows relationships (“roles” in

* Your author is grateful to Mr. Halpin for providing information to supplement his book, and for

his comments and suggestions about this article. Any remaining errors, however, are your
author’s, not his.

Essential Strategies, Inc. — 23 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

ORM parlance) to be such analogs. Like Mr. Barker’s notation, it makes extensive
use of language in making the models accessible to the public, but unlike any of the
other modeling techniques, it has much greater capacity to describe business rules and
constraints.

With ORM, it is difficult to describe entities independently from relationships. The
philosophy behind the language is that it describes “facts,” where a fact is a
combination of entities, attributes, domains, and relationships.

Entities and Attributes

An entity is portrayed by an ellipse (usually a circle, actually) containing its name.
(Figure 6 shows our example described in ORM terms.) Each attribute is also shown
in an ellipse, attached to the entity it describes and containing the attribute’s name.

Entity labels (attributes which are identifiers) may be shown as dashed ellipses,
although as a shorthand, they also may be shown within the entity ellipse in
parentheses, below the entity name. Alternatively, below the entity name may be
shown just the format of the identifier. For example, “nr” represents a numeric field,
“dmy” a date field, etc. A plus sign (+) after nr indicates that it is a calculable number
— typically a system-generated sequence number. Non-identifying attributes always
are portrayed by ellipses outside the entity ellipse.

Relationships not only connect entities to each other but also attributes to entities.
ORM is unique in being able to raise the question: what is the exact relationship of an
attribute to its entity? In particular, it can describe the optionality and cardinality of
attributes.

Essential Strategies, Inc. — 24 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Purchase
Order
(PO #)

Line
Item

Party
Type

(code)

is of

Party
(ID)

is from
is the
source of

is placed
on

is of

Date
(dmy)

Person
Organi-
zation

is name
of

is named
with

Party
Name

has

has

Pur-
pose

Sur-
name

is in to buy

is bought
in

is of

Quan-
tity

(nr)+

to buy

is bought
via

to buy

Product
(Product

ID)

is bought
via

Service
(Service

ID)

has as
name

has as
name

is normally
charged

is net
price of

is normally
charged

is rate per
hour of

Name

Value
($)+

is actually
charged

is actual
cost of

has is for

Line Nr.
+

U

Event
Type

(code)

Event
(code)

is example
of classifies

Event
Descrip-

tion

has

Event Type
Description

has

{O, P}

Figure 6: An ORM Model

Essential Strategies, Inc. — 25 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Domains are explicitly shown as attribute definitions, including those which are simply
terms of reference.

Attributes can be combined if they have the same domain or unit based reference
mode. For example, in Figure 6, the list price of PRODUCT, the rate per hour of
SERVICE, and the actual cost of LINE ITEM are all taken from the domain VALUE (or
MONEY). Similarly, this Figure asserts that PRODUCT names and SERVICE names are
taken from the same set of NAMES. SURNAME and PARTY NAME are shown separately,
implying that the same name could not be put to more than one of those uses.

Relationships

Instead of relationships between two entities, ORM presents the “roles” that entities,
attributes and domains play in the organization’s structure. Indeed, these roles define
the relationships between entities. Roles (Relationships for our purposes here) are
represented by adjacent boxes containing the two or more relationship names and
connected to the entities by solid lines. Relationships are not limited to being binary.
Tertiary and higher order relationships are permitted.

Where most methods portray entities in terms that allow them to be translated into
relational tables, ORM portrays the relationships so that they can be converted to
tables. That is, the two parts (or more) of the relationship become columns in a
“relation” (table). In effect, these are the foreign keys to the two entities. Attributes
of one or more of the related entities also then become part of a generated table.

A relationship may be “objectified”, when it takes on characteristics of an entity. This
is most common in the case of many to many relationships. Note in Figure 7 that the
many to many relationship between PURCHASE ORDER and PRODUCT has been circled.
Instead of creating a formal entity, as is done in many other systems of notation, the
relationship simply becomes a “nested fact type.” This nested fact type may then be
treated as an entity having other entities or attributes related to it. In Figure 7, for
example, the nested fact type LINE ITEM is bought in a QUANTITY.

This is an alternative to simply defining line item as an entity, as was done in Figure 6
This was done in the Figure because of the exclusive relationship between it and
PRODUCT and SERVICE. (See the discussion of constraints between relationships,
below.)

Essential Strategies, Inc. — 26 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Product to buy
is bought

via PurchaseOrder

LineItem

is of
is bought

in

Quantity

Figure 7: Objectified Relationships

As mentioned above, relationships need not be binary. Tertiary and higher-order
relationships can be specified by simply concatenating together more relationship
segments.

Cardinality/Optionality

Cardinality is addressed differently in ORM from the way it is in the other
methods. Here it is tied up with the uniqueness of occurrences of a fact
(relationship). By definition, each occurrence of a fact applies to a single
occurrence of each entity participating in the relationship. That is, while each
PARTY may be the source of one or more PURCHASE ORDERS, each occurrence of a
PARTY’S being the source of a PURCHASE ORDER, by definition, applies only to one
PARTY and to one PURCHASE ORDER.

An entity’s uniqueness with respect to a relationship is represented in ORM by a
double-headed arrow.

If the relationship is one-to-many, the arrow is on the side of the relationship
closest to the “many” side – that is closest to the side of the entity that is related to
only one other thing. If the relationship is one-to-one, the bar appears over each
half. (See PARTY and “Party Name”.) If the relationship is many-to-many, the
arrow crosses both halves of the relationship, showing that both halves are
required to identify uniquely each occurrence of the relationship.

As an example, in Figure 6, the LINE ITEM itself can only appear once in a LINE

ITEM/PURCHASE ORDER relationship (that is, it can appear only once in a
PURCHASE ORDER), because of the double headed arrow under is in. Each
PURCHASE ORDER is from one and only one PARTY, since the arrow is over “is

Essential Strategies, Inc. — 27 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

from”. The PURCHASE ORDER, on the other hand, can be to buy more than one
line item, because LINE ITEM can appear in the set of relationship occurrences more
than once. This is shown by the absence of the double-headed arrow on the
PURCHASE ORDER’S side of the relationship.

Note that we have put a double headed arrow over both sides of the relationship
between the entity PARTY and the attribute “party name”. This means that each
PARTY can have at most one “party name”, and each “party name” can be used for
at most one PARTY. This is a one-to-one relationship.

Optionality: A relationship may be designated as mandatory by placing a solid
circle next to the entity which is the subject of the fact. For example, in Figure 6,
each PURCHASE ORDER must participate in the is from relationship with PARTY.

Names

Entity and attribute names are the real-world names of the things they represent.
Relationship names are verb phrases, usually incorporating “is” or “has”. In some
usages, past tense is used to designate temporal relationships that occurred at a
point in time, while present tense is used to designate permanent relationships.
Some standard abbreviations are used, such as “nr” (number, as a data type), and
“$” (money, as a data type). Spaces are removed from multi-word entity names,
but all words have an initial capital letter.

Unique Identifiers

As described above, labels may be shown as dashed ellipses, although as a shorthand,
they also may be shown within the entity ellipse in parentheses, below the entity name.
If nothing else is shown, these are the unique identifiers of the entity. Where both a
label and some other identifier are involved (such as a system-generated unique
identifier), the unique identifier is shown under the name, and the label is shown as
another attribute, (albeit with the dashed circle). For example, in Figure 6, PARTY is
shown as identified by “ID,” but it also is named with the label PARTY NAME.

If two or more attributes or relationships are required to establish uniqueness for an
entity, a special symbol is used.

In Figure 6, the combination of has “line number” and is in PURCHASE ORDER are
required to identify uniquely an occurrence of the line item relationship. This is
shown by the “uniqueness constraint”, represented with a circled “u” between the “line
number” attribute and the PURCHASE ORDER entity. This implies that a given LINE

NUMBER (such as “2”), while it is for only one LINE ITEM, could apply to more than
one PURCHASE ORDER and a given PURCHASE ORDER could be related to more than
one LINE NUMBER. The combination of “Line nr” and PURCHASE ORDER must be
unique, however.

Essential Strategies, Inc. — 28 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Sub-types

A sub-type is represented as a separate entity, with a thick arrow pointing from it to its
super-type. In Figure 6, ORGANIZATION and PERSON are each sub-types of PARTY, as
shown by the arrows. In addition, a “TYPE” attribute is defined as the flag which
distinguishes between occurrences of the sub-types (“party type” in Figure 6). If the
sub-types are exhaustive (covering all occurrences of the super-type), a constraint is
shown next to the “TYPE” attribute. If they are exclusive (non-overlapping), a double-
headed line is shown over half of the relationship between PARTY and “PartyType”.

In Figure 6, the sub-types of PARTY are exclusive, because of the double-headed arrow
over is of PARTY TYPE, meaning that a PARTY is of one and only one PARTY TYPE. It is
exhaustive because only the options “P” (person) and “O” (organization) are available
for PARTYTYPE.

Constraints between relationships

In the ORM system of notation, constraints between relationships are shown as circles
linked to the relationships involved. An “exclusion constraint” (shown in the Figure
between the PRODUCT and SERVICE relationships from LINE ITEM) says that one or the
other relationship may apply, but not both. In the example, both LINE ITEM to buy
PRODUCT and LINE ITEM to buy SERVICE terminate with a solid circle at LINE ITEM.
This means that each occurrence of LINE ITEM must be to order either a PRODUCT or a
SERVICE. If the circles between the relationships and the entities were absent, the
relationships would be optional. That would mean that a LINE ITEM could exist
without being related to either. The exclusion constraint still means that it cannot be
both.

An “inclusion constraint” would have the same structure, but the symbol, instead of

having an x in the circle would have an x and a dot. This would allow a LINE ITEM

to buy both a PRODUCT or a SERVICE. If the uniqueness constraint were missing
altogether, then a LINE ITEM would have to be to order both.

Comments

In many ways, ORM is the most versatile and most descriptive of the modeling
techniques presented here. It has an extensive capability for describing constraints that
apply to sets of entities and attributes. It is not oriented just towards entities and
relationships, but toward objects and the roles they play — where an “object” may be
an entity, an attribute, or a domain. It is constructed to make it easy to describe
diagrams in English, although it lacks a discipline for constructing the English
sentences.

Essential Strategies, Inc. — 29 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Cardinality is shown via uniqueness constraints, and ordinality is shown by making a
relationship mandatory. Interestingly enough, this approach means the ordinality and
cardinality of attributes can be treated in exactly the same way. Must there be a value
for an attribute? Can there be more than one?

Unlike all the flavors of entity/relationship modeling described here, it makes domains
explicit.

All this expressiveness, however, is achieved at some aesthetic cost. A ORM model of
necessity is much more detailed than an equivalent data model, and as a consequence,
it is often difficult to grasp the shape or purpose of a particular drawing. Also,
because all entities, attributes and relationships carry equal visual weight, it is hard to
see which elements are the most important.

While it does permit showing multiple inheritance and multiple type hierarchies, the
multi-box approach to sub-types takes up a lot of room on the drawing, limiting the
number of other entities that can be placed on it. It also requires a great deal of space
to give a separate symbol to each attribute and each relationship. Moreover, it does
not clearly convey the fact that an occurrence of a sub-type is an occurrence of a
super-type.

Perhaps one day a CASE tool will make it possible to create a data model for purposes
of verifying the overall structure of things, and then convert that to an ORM model for
the purpose of exploring the intricacies of rules and constraints that apply to that
structure.

THE UNIFIED MODELING LANGUAGE (UML)

The Unified Modeling Language (UML) is not billed as “data modeling” techniques,
but as an “object modeling” technique. Instead of entities, it models “object classes”.
Close examination of its models, however, shows these to look suspiciously like
entity/relationship models. Indeed, Ivar Jacobson even calls these classes entity
objects. [Jacobson 1992, p. 132]

Because of a confluence of ideas, techniques, personalities, and politics, UML
promises to become a standard notation for representing the structure of data in the
object-oriented community. It was developed when the “three amigos” of the object-
oriented world, James Rumbaugh, Grady Booch, and Ivar Jacobson, among others,
agreed to adopt as standard a variation on a notation originally developed by David
Embley and his colleagues [Embly, et al. 1992]. The UML was published by the
Object Management Group in 1997 [UML 1998]. Messers. Rumbaugh, Jacobson, and
Booch have written what are purported to be the authoritative texts on UML
[Rumbaugh, Jacobson, & Booch 1999] [Jacobson, Booch, & Rumbaugh 1999]

Essential Strategies, Inc. — 30 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

[Booch, Rumbaugh, & Jacobson 1999], although many books on the subject are
availeable.

As a system of notation for representing the structure of data, the UML static
diagram is functionally the exact equivalent of any other data modeling,
entity/relationship modeling, or object modeling technique. Its classes of entity
objects are really entities, and its associations are relationships. It has specialized
symbols for some things that are already represented by the main symbols in other
notations, and it lacks some symbols used in e/r diagrams. It does, however, have a
more extensive ability to describe inter-relationship constraints.

Yes, the UML does add the ability to describe the behavior of each object class/entity,
but the data structure part of the technique is fundamentally no different from any
other data modeling technique in what it can represent.

In addition, the UML includes other kinds of diagrams besides static object diagrams.
These include use cases, activity diagrams, and others. These do not concern us here,
however.

Figure 8 shows the UML version of our example.

Party

«ident» Party ID:
string

Name: string

Organization

CorporateMission:
string

Person

Surname: string

PurchaseOrder

«ident» PO Number:
string

OrderDate: date

LineItem

«ident» LineNumber:
integer=1

Quantity: real
Price: real

Product Service

PONumber

«ident» ProductCode:
string

Description: string
UnitPrice: real

«ident» Service ID:
string

Description: string
RatePerHour: real

1..11..1

1..1 1..1

0..*0..*

0..* 0..*

{or}

{disjoint, complete}

vendor in
issued to

composed of
part of

forfor

Event EventType

«ident» Code: string
Description: string

«ident» Code: string
Description: string

1..* 0..1

a classification
for

bought via bought via

in

«ident»

Figure 8: The UML Model

Essential Strategies, Inc. — 31 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Entities (Object Classes) and Attributes

As stated above, in object models, entities are called object classes. A class in the
UML static model is a square cornered rectangle with three divisions. The top part
contains the class name. The middle section contains a list of attributes. The bottom,
if included, contains descriptions of behavior. Since the UML is mostly used for
design, these behavior descriptions are usually in the form of pseudo-code or C++.

An attribute can be referred to by one or more of the following elements:

• Stereotype – This extends the attribute concept defined by the person
preparing the diagram. (See below.)

• Visibility – In terms of the object-oriented code which may implement the
class, is this attribute visible to all (+), to only those classes which are sub-
types of this class (#), or to this class only(-).

• Name – This is the only required element.

• Multiplicity – Object-orientation is not constrained by the relational notion that
an object may have only one value for an attribute. This parameter lets you
define that it may have more than one, up to five, etc. If the lower limit is
zero, then occurrences of the related entity are optional.

• Type – This is the data type of the attribute (number, character, etc.). The
values for this depend on the model’s environment.

• =initial value – Here can be specified a default value.

• {other} – Additional named properties may be added, such as “tag=<value>”.

There are no spaces between the words in names. The class is called PurchaseOrder
instead of Purchase Order.

The UML introduces the concept of stereotype, which is an additional annotation that
can be used to enhance the standard UML notation. If you don’t like something about
UML, you can change it! A stereotype is identified by being surrounded by guillimets
(« »), and can be used to extend entity, attribute, and association definitions. In
Figure 8, the stereotype «ident» extends the model to denote unique identifiers. (See
“Unique Identifiers” on page 33, below.)

Relationships (Associations)

A relationship is called an “association” in the object-oriented world. Rather than
using graphic symbols, all the information on a UML association is conveyed by
characters.

Essential Strategies, Inc. — 32 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Cardinality/Optionality

Both cardinality and optionality are conveyed by characters in the form:

<lower limit>

..

<upper limit>

... where the <lower limit> denotes the optionality (nearly always 0 or 1, although
conceivably it could be something else), and the <upper limit> denotes the
cardinality. The <upper limit> may be either an asterisk (*) for the generic “more
than one”, or it may be an explicit number, a set of numbers, or a range.

For example, “0..*” means “may be one or more” (zero, one, or more), and “1..1”
means “must be exactly one”.

Since they are most common, “0..*” may be abbreviated “*”, and “1..1” may be
abbreviated “1”.

In Figure 8, for example, the fact that each PARTY may be a vendor in one or more
PURCHASE ORDERS is shown by the string “0..*” next to PURCHASE ORDER. The
“0” makes it optional (“may be”) and the * means that it can be any number.
Similarly, the fact that each PURCHASE ORDER must be to one and only one PARTY

is shown by the string “1..1”. The first 1 means that the relationship is mandatory
(“must be”) and the second means that the PURCHASE ORDER may be to no more
than one PARTY.

Names

There are two primary ways to name associations. A simple verb phrase may
name the association in its entirety. A triangle next to the name tells which way to
read it. Alternatively, “roles” can be defined at each end to describe the part
played by the class in the association. The concept of role is very close to the
relationship names used in the Barker notation, so that convention could be applied
here, as was done in Figure 8.

 “Part of/composed of”

Extra symbols represent the particular association where each object in one class is
composed of one or more objects in the other class. (Each object in the second
class must be part of one and only one object in the first class) The association
acquires a diamond symbol next to the parent (“composed of”) class. If the
association is mandatory and the referential integrity rule is “cascade delete” – that
is, deletion of the parent deletes all the children – this is called “composition” and
the diamond is solid. This is shown for the PurchaseOrder/LineItem association in
Figure 8. If the association is optional to the parent (and therefore has the

Essential Strategies, Inc. — 33 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

referential integrity rule “nullify delete”) – that is, a parent can be deleted without
affecting the children – then the diamond is open and is called “aggregation”. The
notation does not address the “restricted” rule, in which deletion of a parent is not
permitted if children exist. Nor does it address referential integrity rules for any
other kind of association.

Unique Identifiers

Unique identifiers are rarely referred to in the object-oriented world. When the
behavior of objects in a class requires locating a particular occurrence of another class,
however, the attribute used for locating that occurrence is shown in a box next to the
entity needing it. This reflects the programming that will be required when the classes
are implemented, but it is not meaningful in an analysis model. For example, in Figure
8, “line number”, is required from the point of view of the PURCHASE ORDER to locate
a particular LINE ITEM.

Alternatively, stereotypes can be used to designate attributes and relationships that
constitute unique identifiers, in a structure very similar to that of the Barker notation.
These are shown as «ident» in Figure 8.

Sub-types

The UML shows sub-types as separate entity boxes, each removed from its super-type
and connected to it by an “isa” relationship. (Each occurrence of a sub-type “is a[n]”
occurrence of the super-type.)

Note in Figure 8 that the subtype structure is labeled {disjoint, complete}. This is
equivalent to the rule in other notations that each occurrence of the supertype must be
a member of one of the sub-types (complete), and an occurrence may not be a member
of more than one sub-type (disjoint). In UML, this constraint does not have to be
observed. The sub-type structure could be {overlapping, incomplete} or any other
permutations of the two.

Constraints between relationships

Constraints between relationships are shown as dashed lines between pairs of
associations. Such a line is called a constraint. If it is annotated {xor} or simply
{or}, it is an “exclusive or”. (Each occurrence of the base entity must be (or may be)
related to either an occurrence of one entity, or to an occurrence of the other, but not
both.) If it were {ior}, however, it would be an “inclusive or”. (Each occurrence of
the base entity must be (or may be) related to either an occurrence of one entity, or to
an occurrence of the other, or both.) Indeed, the dashed line can represent any
relationship desired between two associations.

Essential Strategies, Inc. — 34 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Comments

UML has a number of advantages over its predecessors:

1. A constraints between relationships in the Barker notation is replaced by a
simple line between two associations that can be annotated to describe any
relationship between two associations. The Barker constraints between
relationships is represented in the UML by the word “or”, but other inter-
association relationships may be represented that the Barker notation cannot
represent. This is useful for introducing many kinds of business rules.

2. For business rules that are not simple relationships between two associations,
the UML introduces a small flag that can include text describing any business
rule.

3. Attributes can be described in more detail than in other notations.

4. The UML approach to optionality and cardinality makes it possible to express
more complex upper limits, as in “each <entity 1> may be related to zero, 3, 6-
7, or 9 occurrences of <entity 2>”.

5. Overlapping and incomplete configurations of sub-types are allowed.

6. Multiple inheritance and multiple type hierarchies are permitted.

These are valuable concepts. The first three could easily be added to other notations,
with good effect. The fourth cannot, but it is rare that such a construct is needed, so
its omission is not a practical problem. Such specific upper limits tend to be derived
from business rules that might change, so it is not a good idea to include them in a
conceptual data model. In the fifth case, the requirement that sub-types be complete
and disjoint turns out to be a very useful discipline that produces much more rigorous
models than would be done if the restriction were relaxed. The final case describes a
point which is controversial even in the object-oriented world. In your author’s
experience, nearly all examples that appear to require multiple inheritance or multiple
type hierarchies can be solved by attacking the model from a different direction.

All of these may be valuable, however, if the model is being used to support design.

Other aspects of UML, however, are problematic if the models are to be presented to
the public for requirements analysis.

First of all, in UML, cardinality and optionality are represented by numbers instead of
graphic symbols. Yes, this has the advantage of permitting any kind of cardinality,
such as 1,4-6,7, but requirements for such a statement are rare. It has the
disadvantage, however, of making it an intellectual exercise to decode the symbols –
instead of a visual processing one. You no longer “see” the relationship. You must
“understand” it. The left side of the brain is used instead of the right. With

Essential Strategies, Inc. — 35 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Information Engineering or with Mr. Barker’s notation, the entire process of decoding
how many participants there are in a relationship is a visual one – and this makes the
models much easier to read for those untutored in the notation.

The shorthand of using an asterisk for “may be one or more” and a one for “must be
one and only one” in one sense simplifies the UML model, since these are the most
common cardinalities and optionalities. On the other hand, it destroys the systematic
semantic structure in which you automatically know both the upper and lower limits.

Second, the UML has added unnecessary symbols for specific kinds of relationships.
The concepts of composition and aggregation are handled in entity/relationship
diagrams by simply labeling a relationship part of and composed of. Having special
symbols for two of the many possible kinds of relationships unnecessarily complicates
the model.

More significantly, these additional symbols are incomplete. They represent the
cascade delete and nullify delete rules for “composed of/part of” relationships, but
what about the restricted delete rule? (You may not delete the parent at all if children
exist.) And what about showing these rules for other relationships? Adding “C”, “R”,
or “N” to an e/r diagram uniformly describes whether deletion of the parent is
permitted and if it calls for deletion of the children – regardless of the relationship. In
addition, Entity Life Histories more completely describe how entity occurrences may
be created and under what circumstances they can be deleted.

It turns out that the justification for these symbols is that there are physical design
implications for the aggregation and composition concepts. In an object-oriented
implementation, it is possible for one object to be physically inside another object.
Showing the diamonds on a UML design model provides information to the
programmers. This is, however, both distracting and unnecessary in the conceptual
model used for requirements analysis.

While it does permit showing multiple inheritance and multiple type hierarchies, the
multi-box approach to sub-types takes up a lot of room on the drawing, limiting the
number of other entities that can be placed on it. It also requires a great deal of space
to give a separate symbol to each attribute and each relationship. Moreover, it does
not clearly convey the fact that an occurrence of a sub-type is an occurrence of a
super-type.

There are two other shortcomings of the UML, but these can be addressed, either
through the use of stereotypes or by imposing discipline on the way the UML is used.

In the first case, the UML could be significantly improved by increased discipline in
the use of relationship names. Most commonly a relationship name in the UML is a
single verb that describes it in one direction. Were this the only option, it would be
unacceptable. It is, however, possible to add “roles” to each end of the relationship.
This provides the ability to portray how an entity is viewed from the perspective of

Essential Strategies, Inc. — 36 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

another entity. While no one outside the Barker world does this, it would be valuable
if these role names were constrained to follow the Barker naming convention.

Second, the UML only partially deals with unique identifiers. The philosophy behind
object-orientation is that it isn’t necessary explicitly to show unique identifiers. But
then it turns out that from the point of view of a parent entity, it is often necessary to
identify occurrences of a child entity. So “qualified associations” allow this to be
expressed. But you are only allowed to identify an occurrence to a parent entity. You
are not allowed to identify it to the world at large.

This means that instead of a simple symbol attached to a relationship or attribute to
indicate a unique identifier universally, you have to add a whole new box whose
meaning is constrained and confusing at best.*

Note that this can be addressed using stereotypes as described above. In Figure 8,
“«ident»” was added to several attributes and a relationship to show their participation
in unique identifiers.

This doesn’t mean that the UML shouldn’t be used for the physical design model. To
the contrary, the additional expressiveness described here makes it eminently suitable
for that purpose. (And designers are not the least bit bothered by the aesthetic
objections raised above.) But the UML is fundamentally that – a design tool.

* As a measure of how confusing this is, different authors themselves can’t even agree on how to

present it or what it means. Martin Fowler shows the qualifying attribute as presented here,
attached to the parent entity. Paul Harmon and Mark Watson, on the other hand, show the
attribute next to the child entity.

Essential Strategies, Inc. — 37 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

EXTENSIBLE MARKUP LANGUAGE (XML)

The last technique presented here isn’t really a data modeling language at all. Rather
is a way of representing data structure in text, using specially defined “tags” or labels
to describe the structure of text. The data being described could be either from an
entity/relationship model or from a database design.

The Extensible Markup Language (XML) is similar to the Hypertext Markup
Language (HTML) that is used to describe pages to the World-wide Web. XML and
HTML are both sub-sets of something called “Standard Generalized Markup
Language”, or SGML. This is a sophisticated tag language, which, “due to [its]
complexity, and the complexity of the tools required,” as the Object Management
Group has so delicately put it, “has not achieved widespread uptake.” [XML 1997]

In each case, a set of “tags” are inserted into a body of text. In the case of HTML, the
tags are pre-defined to be interpreted by a standard piece of software called a browser.
The browser then uses the tags to determine how various parts of the document
should be displayed.

XML, on the other hand, allows tags to be defined by users, and is not concerned with
display at all. Rather, the tags can be defined to describe a data structure, and data can
be transmitted over the Internet in that structure.

Because tags are defined by users, there is no existing software that will automatically
understand the tags. Software can read the definitions of tags and insure that data
transmitted using them follows them, but it cannot provide more interpretation to the
structure unless it is specifically written to do so.

This means that XML is most useful when within a community that defines a set of
tags in common for its purpose. For example, the chemical industry has set up an
XML-based Chemical Markup Language, and astronomers, mathematicians and the
like have similarly defined sets of tags for describing things in their respective fields.

Essential Strategies, Inc. — 38 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

What is it?

Figure 9 shows an example of XML used to describe a data record that might be
presented in a document.

<?XML version=”1.0”?>
<!-- **** Purchasing **** -->
<PURCHASE_ORDER>

<ISSUED_TO_PARTY>
<party_id>234553</party_id>
<name>Acme Sporting Goods</name>
<party_type>Organization</party_type>
<surname><\surname>
<corporate_mission>Get America

 moving</corporate_mission>
</ISSUED_TO_PARTY>
<po_number>743453</po_number>
<order_date>12 November, 1999</order_date>
<LINE_ITEM>

<line_number>1</line_number>
<quantity>12</quantity>
<price>64.75</price>
<product_service_indicator>product

</product_service_indicator>
<PRODUCT>

<product_code>X-23</product_code>
<description>Nike sneakers</description>
<unit price>75.00</unit_price>

</PRODUCT>
</LINE_ITEM>
<LINE_ITEM>

<line_number>1</line_number>
<quantity>12</quantity>
<price>64.75</price>
<product_service_indicator>service

</product_service_indicator>
<SERVICE>

<service_id>x-87</product_code>
<description>Walking the dog</description>
<rate_per_hour>12.00</rate_per_hour>

</SERVICE>
</LINE_ITEM>
<LINE_ITEM/>

</PURCHASE_ORDER>

Figure 9: An XML Document

Essential Strategies, Inc. — 39 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Note a few interesting things about this example.

First of all, as with HTML, each tag is surrounded by less than and greater than
brackets (<>), and is usually followed by text. The text is in turn followed by an end
tag, in the form </...>. A tag may have no content, in which case either the end
tag follows immediately upon the tag (as in <surname></surname>), or the tag
itself ends with a forward slash (as in <LINE_ITEM/>). Unlike with HTML,
however, the end tag is always required.

A second thing to note is that, in this case, following the tag for PURCHASE_ORDER, a
set of related tags follow, describing characteristics (columns, in this case) of
PURCHASE_ORDER. In this particular case, the tag <PURCHASE_ORDER> has been
defined such that it must be followed by exactly one tag for <ISSUED_TO_PARTY>,
one for <po_number>, and so forth. You can’t see this from the example, but
the tag <corporate_mission> is optional. In addition, the tag for LINE_ITEM

is also optional, and there may be one or more occurrences of it.

Although it is optional, all XML documents should begin with <?XML
version=”1.0”?> (or whatever version number is appropriate.)

Note that the structure is hierarchical, so that an element can be under only one other
element, and there can be only one hierarchy in a document.

Comments are in the form <!-- . . . --> Note that the double hyphens must be
part of the comment. Note also that, unlike HTML, XML lets you use a comment to
surround lines of code that you want to disable.

The meaning of a tag is defined in a document type declaration (DTD). This is a body
of code that defines tags through a set of elements. It is the DTD that allows you to
specify a data structure. While an XML document contains data, the DTD contains
the model of those data.

It is the DTD that is the analogy to the modeling techniques we have seen in this
article.

Essential Strategies, Inc. — 40 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Entities and Attributes

The DTD for the above example is shown in Figure 10.

<!DOCTYPE PURCHASE_ORDER [
<!ELEMENT PURCHASE_ORDER (ISSUED_TO_PARTY, po_number,
order_date, LINE_ITEM*)>

<!ELEMENT ISSUED_TO_PARTY (party_id, name,
party_type, surname?, corporate_mission?)>

<!ELEMENT party_id (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT party_type (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT corporate_mission (#PCDATA)>

<!ELEMENT po_number (#PCDATA)>
<!ELEMENT order_date (#PCDATA)>
<!ELEMENT LINE_ITEM (line_number, quantity, price,

product_service_indicator, PRODUCT?, SERVICE?)>
<!ELEMENT line_number (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT product_service_indicator (#PCDATA)>
<!ELEMENT PRODUCT (product_code, description,

unit_price)>
<!ELEMENT product_code (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT unit_price (#PCDATA)>

<!ELEMENT SERVICE (service_id, description,
rate_per_hour)>

<!ELEMENT service_id (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT rate_per_hour (#PCDATA)>

]

Figure 10: An XML Data Type Definition

The DTD for an XML document can be either part of the document or in an external
file. If it is external, the DOCTYPE statement still occurs in the document, with the
argument “SYSTEM -filename-”, where “-filename-“ is the name of the file containing
the DTD. For example, if the above DTD were in an external file called “xxx.dtd”, the
DOCTYPE statement would read:

<!DOCTYPE PURCHASE_ORDER SYSTEM xxx.dtd>
The same line would then also appear as the first line in the file xxx.dtd.

Note that the name specified in the DOCTYPE statement must be the same as the
name of the highest level ELEMENT.

Essential Strategies, Inc. — 41 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Each element in the specification refers to a piece of information. XML doesn’t care
whether it is an entity or an attribute in your data model. What it does care about in
some cases is that the element may be defined by one or more predicates. A predicate
is simply a piece of information about an element. This may be either an attribute or
an entity in your data model. In the example above, PURCHASE_ORDER has as
predicates ISSUED_TO_PARTY, po_number, order_date, and LINE_ITEM.

Cardinality/optionality

Relationships are represented by the attachment of predicates to elements. In the
absence of any special characters, this means that there must be exactly one
occurrence of each of the predicate for each occurrence of parent element. If the
predicate is followed by a “?”, then the predicate is not required. If it is followed by a
“*” it is not required, but if it occurs, it may have more than one occurrence. If it is
followed by a “+” at least one occurrence is required and it may have more than one.

In the example in Figure 10, each PURCHASE_ORDER must have an ISSUED_TO_PARTY,
a “po_number” and an “order_date”. In addition, a PURCHASE_ORDER may or may
not have any LINE_ITEMS, but it could have more than one.

Each of the predicates is then defined in turn in one of the lines that follow. At the
bottom of the tree in each case, “#PCDATA” means that the element will contain text
that can be parsed by browsing software.

Names

Names in XML may not have spaces. XML is case sensitive. XML keywords are in
all uppercase. The case of a tag name in an element definition must be the same as
was used if the element appeared as a predicate, and the case of an element used an
XML document must be the same as in its DTD definition.

Note that there is nothing in XML to prevent you from specifying multi-valued
attributes, but in the interest of coherence for the data structure, following the rules of
normalization is strongly recommended. By convention in the above example,
elements that would be entities in an entity/relationship model appear in upper case.
Elements that would appear in that model as attributes are in lower case. Actual
naming conventions will vary.

Unique identifiers

XML has no way to recognize unique identifiers.

Essential Strategies, Inc. — 42 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

Sub-types

XML has no way to recognize sub-types and super-types. Note in the example above,
that the attributes of ISSUED_TO_PARTY had to include both attributes of PERSON and
attributes of ORGANIZATION from our other models. The attribute “product-service-
indicator” was included to determine which case was involved. Software would be
required to enforce this.

Constraints between relationships

XML has no way to describe constraints between relationships.

Comments

As noted above, XML isn’t really a data modeling language. It is not very
sophisticated in its ability to represent the finer points of data structure. It shares the
limitations of a relational database, for example, with no ability to recognize sub-types
or constraints. It is being recognized, however, as a very powerful way to describe the
essence of data structures, and to be used as a template for transmitting data from one
place to another.

While the tag structure does seem to be a good vehicle for describing and
communicating database structure, the requirement for discipline in the way we
organize data is more present than ever. XML doesn’t care if we have repeating
groups, monstrous data structures, or whatever. If we are to use XML to express a
data structure, it is incumbent upon us to do as good a job with the tool as we can.
(This is of course true of any modeling technique.)

Following in the tradition of the chemists and astronomers mentioned above, the
Object Management Group (OMG) has settled on a set of XML tags they call the
XML Metadata Interchange (XMI) as a way to describe in standard terms the
structure of data about data (“metadata”). This is useful in communicating between
CASE tools, and in describing a “metadata repository”. Along the same lines, a group
of companies are in the process of defining a Common Warehouse Metadata
Interchange (CWMI) that comprises a subset of the XMI tags to support data
warehouses.

This means that there are actually two ways that a database structure can be described
in XML:

First, an application database can be described in the DTD of an XML document. In
this case the operational data contained in the described database could be placed
between sets of the described tags. The DTD could, for example, be generated by one

Essential Strategies, Inc. — 43 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

CASE tool and read by another one as a way of communicating data structure from
one to the other.

A second approach is to make the table and column definitions data that appear
between tags of an XMI metamodel. This is a little more arcane, since the XMI
metamodel is very abstract, but using the XMI metamodel allows for description of
much more than tables and columns.)

Note, however, that the issue in defining a metadata repository or communicating
between CASE tools is not the use of XML or any other particular language. The
issue is the database structure and its semantics. The important question is not how a
universal metadata repository will be represented. It could as easily be represented by
a set of relational tables or an entity/relationship diagram. The questions are, what’s in
it and what does it mean? XML by itself does not answer that question. Which
objects are significant and should be described? That is the harder question. Having a
new language for describing them doesn't seem to contribute to that conversation.

Indeed, in recognizing that XML is a good vehicle for describing database structure,
the issue that seems most obvious is that this will put greater responsibility on data
administrators to define data correctly. XML will not do that. XML will only record
whatever data design (good or bad) human beings come up with.

As Clive Finkelstein has said, the advent of XML is going to make data modelers and
designers even more important than they are now. "After fifteen years of obscurity,
data modelers can finally become overnight successes." [Finkelstein, 1999]

Essential Strategies, Inc. — 44 — Comparison of Techniques
Copyright © Essential Strategies, Inc.(11/99)

SUMMARY

The Table

Table 2 summarizes the techniques discussed here in tabular form. The columns
represent the terms of the comparison, as described here, and the rows represent the
systems of notation.

Method
Entities &
Attributes Relationships

Unique
Identifiers Sub-types

Constraints
Between
Relation-

ships
Barker
Method

Entities shown by

round-cornered

rectangles; attributes

shown optionally

within rectangles;

marked as mandatory,

optional or part of

unique identifier;

Solid or dashed lines,

named both directions

with prepositions;

optionality shown by

lines half solid or

dashed; cardinality

shown by presence or

absence of crows’ feet;

relationship names form

sentence.; no foreign

keys; always binary.

Shown by marks on

relationship or hash

marks (#) before

attribute. No primary

keys.

Shown as entities

within super-

type; complete

and exclusive.

Mutually

exclusive;

No other

constrataints.

Chen Entities shown by

square-cornered

rectangles; attributes

in circles outside entity

boxes;

Rhombus symbol;

optionality and

cardinality from num-

bers by entities; named

one way only with

nouns; no foreign keys;

need not be binary.

Not normally shown;

special version may be

drawn, replacing

relationship name with

“I”.

Shown as

external

rectangles related

via “isa’

relationship;;

complete and

exclusive;

subtype may be

in more than one

super-type

Sub-types with

relationship as

supertype;

mutually

exclusive.

Informa-
tion
Engineer-
ing

Entities shown by

square-cornered

rectangles; attributes

not shown

Solid lines, optionality

shown via circle or line;

cardinality shown by

crow’s foot or line;

named one way only

with verbs; no foreign

keys; always binary.

Not shown. Shown as entities

within supertype

(Martin); External

rectangles

(Finkelstein);

exclusive; may

be complete or

not; subtype may

be in more than

one super-type

May be mutually

exclusive or

overlap.

Table 2: Comparison of the Syntactic Conventions

Data Modeling — 45 — Syntactic Conventions
Copyright © Essential Strategies, Inc. (11/99)

Method
Entities &
Attributes Relationships

Unique
Identifiers Sub-types

Constraints
Between
Relation-

ships
IDEF1X Entities shown by

square-cornered or

round-cornered

rectangles; attributesi

shown.

Solid or dashed lines,

depending on whether

relationship is iden-

tifying; optionality and

cardinality through

combinations of

symbols; some

concepts represented

by more than one

combination; named

in both directions with

verbs; foreign and pri-

mary keys are shown;

must be binary

Shown via primary

keys; if relationship is

part of primary key,

shown via foreign key;

in that case, line

representation changes

from dashed to solid

and entity box aquires

round corners.

Shown as

external

rectangles related

via “isa’

relationship;;

complete or

incomplete and

exclusive or

overlapping;

subtype may be

in more than one

super-type

Only shown via

super-type/sub-

types.

ORM Entities shown as

ellipses; most

attributes in ellipses

outside the entities;

domains shown as

attribute definitions;

Adjacent boxes con-

nected by solid lines to

entities, relate en-tities

and attributes to

entities; may be “ob-

jectified”; need not be

binary; optionality

shown by dot on en-

tity or attribute;

cardinality defined in

terms of uniqueness of

relationship; line over

relationship halves

denotes this; named

both ways with verbs;

no foreign keys; need

not be binary.

Entity may be

identified by label

attribute in dashed

ellipse or by attribute

shown inside the

entity; may have both

external label and

internal unique

identifier. If

uniqueness is

established by two or

more relationships

(including relationships

to attributes),

uniqueness symbol

bridges the

relationships.

Shown as

external

rectangles with

arrows pointing

to super-type;

“type” attribute is

specified; if

mutually

exclusive,

relationship to

type attribute is

identified by

entity half only; if

complete, a

constraint is

added to “type”

attribute.

May be mutually

exclusive or

overlap.

Table 2: Comparison of the Syntactic Conventions (continued)

Data Modeling — 46 — Syntactic Conventions
Copyright © Essential Strategies, Inc. (11/99)

Method
Entities &
Attributes Relationships

Unique
Identifiers Sub-types

Constraints
Between
Relation-

ships
The Unified
Modeling
Language

Entities are called

“object classes” and

shown by square-

cornered rectangles;

attributes are listed

inside entity boxes;

behavior also shown;

boxes may expand to

accommodate

attributes, but

otherwise are of fixed

size.

Solid lines, normally

labeled in one

direction with verbs;

may be labeled at each

end with roles;

optionality is shown

by last character of

relationship descrip-

tion; cardinality is

shown by first charac-

ter of relationship end

description. foreign

keys not shown; must

be binary; there is a

special symbol for

“composed of / part

of”;

Not normally shown;

may be shown as

attributes required to

identify occurrence of

entity from perspective

of another entity.

Primary keys not

shown.

May be shown using

stereotypes.

Shown as

external

rectangles related

via “isa’

relationship;

exclusive; may

be complete or

incomplete, and

disjoint or

overlapping.

Any constraint

may be shown

between two

relationships.

Table 2: Comparison of the Syntactic Conventions (continued)

About Sub-types and Super-types

Most of the notations here show sub-types as separate boxes outside the super-type boxes.
Only Mr. Barker’s method and Mr. Martin’s version of Information Engineering adopt the
Venn diagram approach of showing subsets inside the superset icon.

The separate sub-type approach has the advantage of making it possible to represent
alternate type hierarchies (multiple sets of sub-types for a super-type) and multiple
inheritance (a sub-type having more than one super-type).

It is not at all clear that these are desirable things, however. Even in the object-oriented
world, multiple inheritance is controversial. If a sub-type has two parents, each of which
are derived in some way from a common parent, whose version of the parent is accepted?
As for multiple-type hierarchies, a sub-type structure is supposed to represent a
fundamental division of super-type occurrences into categories. If the division isn’t that
fundamental, perhaps it shouldn’t be represented by sub-types. There are other ways to
describe classification in a model.

Moreover, there are serious disadvantages to representing super-types and sub-types this
way.

Data Modeling — 47 — Syntactic Conventions
Copyright © Essential Strategies, Inc. (11/99)

First of all it drastically increases the amount of diagram real estate required for a model.
Placing more than ten or fifteen boxes on a page makes it unreadable. However, if boxes
are nested, the internal boxes don’t count toward this number. If sub-types are outside
their super-types, you radically reduce the amount of the model that can be shown on a
page. Three entities with five sub-types each, for example, would be all you could fit on a
UML diagram, but these only represent 3/15 of an Barker diagram.

A more subtle objection to the external sub-type approach is that the box-inside-box
notation emphasizes graphically the fact that an occurrence of the sub-type is an
occurrence of the super-type. A PERSON is not related to a PARTY. A PERSON is a PARTY.
Any relationship to PARTY is also a relationship to PERSON, and is also a relationship to
ORGANIZATION.

This point is not as clearly made when the sub-type boxes are scattered all over the page.
When the sub-type is on one side of a diagram, it is not at all obvious that a relationship to
its super-type on the other side of the diagram applies to it.

About Positional Conventions

There are two aspects to the organization of entities on a model diagram: their relative
positions on the diagram, and the way relationship lines are treated.

In the first case, many data models are created with entities placed randomly on the page,
in no particular order. This can make models extremely confusing and hard to read. Most
of the texts on data modeling do not have anything to say about where entities should be
placed. In point of fact, however, if the entities are positioned in terms of their roles in the
diagram, the diagram is much easier to understand.

Mr. Barker recommends the “dead crow” approach to positioning entities on the page. In
that, entities are arranged so that the crow’s feet in relationships are all facing either to the
left or the top of the diagram. This has the effect of placing reference entities more or less
in the lower right and transaction entities more or less in the upper left.

Some would prefer to have the crow’s feet point down and to the right. This is heretical
to your author, but as long as the rule is followed consistently, it has the same effect. Mr.
Barker has stated that the reason he chose the direction he did to make it clear that this is
not a hierarchy, as would be suggested if the rule were reversed.

So, while Mr. Barker is the only proponent of a notation to recommend a positional
convention, there is nothing in any of the techniques presented here to prevent using one.
Indeed, this convention was followed in all of the illustrations in this article.

The second issue has to do with bending relationship lines. Every symbol on a diagram
represents work for the viewer. It is something to be understood and interpreted. For
readability purposes, it is in our interest to keep both the absolute number of symbols and
the number of kinds of symbols to a minimum. One symbol which often appears in

Data Modeling — 48 — Syntactic Conventions
Copyright © Essential Strategies, Inc. (11/99)

models, however, is a bend in the relationship line. This doesn’t mean anything, but your
eye is still drawn to it, and it still has to be interpreted – even if the interpretation is “oh, it
doesn’t mean anything”.

The way to avoid bending lines is to stretch entity boxes. In fact, stretching entity boxes is
also useful as a way to call attention to more important entities.

There is no rule in any of the techniques presented above preventing you from stretching
entity boxes. Unfortunately, however, in most cases it “simply isn’t done”. The CASE
tools which support the techniques do not permit it. The sample models in text books do
not do it.

Only Mr. Barker explicitly recommends doing it.

This of course becomes a serious problem only as the number of entities in the diagram
increases. It is never a good idea to have more than about 15 entities on a page, if the
page is to be read by anyone outside the group producing the model.

About Semantic Conventions

In addition to the kinds of conventions described so far, it is possible to set up semantic
conventions which specify how standard business situations are to be modeled. The
choice of notation and the approach to positioning entities have no effect on semantic
notations. For more information on semantic conventions, see works by David Hay
[1996] and Martin Fowler [1997].

RECOMMENDATION

Because the orientation and purposes of data modeling are very different when supporting
analysis than they are when supporting design, no one modeling technique currently
available is appropriate for both. Those with the best aesthetics don’t describe as many
aspects of the issue as others, which are much less accessible.

The one exception to this is Object Role Modeling, which is both rich in detail, and is
relatively easy to read. This technique is radically different from the other modeling
approaches, and has therefore been less successful in gaining acceptance.

Among those using the more common entity/relationship view of the world, Richard
Barker’s notation is clearly superior as a vehicle for discussing models with prospective
system users, and the UML has advantages in supporting design – particularly object-
oriented design.

Data Modeling — 49 — Syntactic Conventions
Copyright © Essential Strategies, Inc. (11/99)

For Analysis – Richard Barker’s Notation

There are several arguments in favor of Mr. Barker’s data modeling syntax for use in
requirments analysis:

Aesthetic simplicity

This notation is the easiest to present to a user audience. It is the simplest and clearest
among those that are as complete. By using fewer kinds of symbols, Barker’s
technique keeps drawings relatively uncluttered, and fewer kinds of elements have to
be understood. Simpler, less cluttered diagrams are more accessible to non-technical
managers and other end-users.

It uses a line in two parts, each of which may be dashed or solid, to convey the entire
set of optional or mandatory aspects of the relationship pair. The presence or absence
of a crow’s foot is all that is necessary to represent the upper limit of a relationship.
The single symbol of a split line which is either solid or dotted, plus the presence or
absence of a crow’s foot, is aesthetically simpler than say, James Martin's notation
which requires combinations of four separate symbols to convey the same information.

In Barker’s notation, the “dashedness” or solidness of a line (its most visible aesthetic
quality) represents the optionality of the relationship, which is its most important
characteristic to most users. IDEF1X, on the other hand, uses “dashedness” to
represent the extent to which a relationship is in a unique identifier.

Other systems of notation add symbols unnecessarily: Chen’s notation uses different
symbols for objects that are implementations of relationships and objects that are
tangible entities; Chen also uses separate symbols for each attribute; IDEF1X also
distinguishes between "dependent" entities and “independent” ones. IDEF1X also
uses different symbols at the different ends of relationships. The UML designates
certain kinds of relationships (“part of” and “member of”), by either of two special
symbols, depending on the referential integrity constraint in effect.

In each case, the additional symbols merely add to the complexity of a diagram and
make it more impenetrable, without communicating anything that is not already
contained in the simpler notation and names of Barker’s notation.

James Martin’s version of Information Engineering is the only one other than Barker’s
notation that represents sub-types inside super-types, thereby reinforcing the fact that
it is a sub-set, and saving diagram space in the process.

Also, other techniques introduce extra complexity by allowing relationship lines to
meander all over the diagram. Barker’s notation calls for a specific approach to layout
which keeps relationship lines short and straight.

Completeness

Data Modeling — 50 — Syntactic Conventions
Copyright © Essential Strategies, Inc. (11/99)

Most of the techniques show the same things that Barker’s notation technique does,
although some are more complete than others. Each of them doesn’t have something
that Barker’s notation has.

Information Engineering does not show attributes; IDEF1X does not show
constraints; only Mr. Martin’s version of Information Engineering shows sub-types
within super-types. Mr. Chen’s notation, Information Engineering, and UML do not
show unique identifiers. Only ORM has all of the same features that the Barker
method has, but with its external attributes and sub-types it uses way too much space
on the diagram.

In fairness, some of the techniques do things that Barker’s does not. IDEF1X, ORM,
and the UML show non-exhaustive sub-types, where the sub-types do not represent all
occurrences of the super-type. (Barker’s technique deals with this only indirectly —
by defining a sub-type called OTHER . . .). The UML also shows non-exclusive sub-
types, where an occurrence of the super-type can be an occurrence of more than one
sub-type. Information Engineering and the UML also show non-exclusive constraints
between relationships, not available in Barker’s technique.

These are all useful things.

The addition of processing logic to data models in the manner of object-modeling
techniques (including behavior in the model) is also a very powerful idea. Clearly
provision for describing the behavior of an entity is something that could be added to
Barker’s notation. Whether it is more appropriate to extend this notation, in the
manner of the UML, or to use separate models, such as entity life histories and
state/transition diagrams, remains to be seen.

Language

Barker’s notation requires the analyst to describe relationships succinctly and in clear,
grammatically sound, easy to understand English. As mentioned above, where all the
other techniques use verbs and verb phrases as relationship names, Barker’s notation
uses prepositional phrases. This is more appropriate, since the preposition is the part
of speech that describes relationships. Verbs describe not relationships but actions,
which makes them more appropriate for function models than data models. To use a
verb to describe a relationship is to say that the relationship is defined by actions taken
on the two entities. It is better simply to describe the nature of the relationship itself.

Using verbs makes it impossible to construct a clean, natural English sentence that
completely describes the relationship. “Each PARTY sells in zero, one or more
PURCHASE ORDERS,” is not a sentence one would normally use in conversation.

Moreover, finding the right prepositional phase to capture the precise meaning of the
relationship is often more difficult than finding a verb that approximately gets the idea
across. The requirement to use prepositions then adds a level of discipline to the

Data Modeling — 51 — Syntactic Conventions
Copyright © Essential Strategies, Inc. (11/99)

analyst’s assignment. The analyst must understand the relationship very well to come
up with exactly the right name for it.

(The Hitchhiker’s Guide to the Galaxy was reported to have once been sued for
saying that “Ravenous Bugblatter Beasts often make a very good meal for visiting
tourists,” when it should have said that “Ravenous Bugblatter Beasts often make a
very good meal of visiting tourists.” [Adams 1982] Using exactly the right word is
important.)

Correctly naming relationships often reveals that in fact there is more than one.

This requirement for well built relationship sentences, then, improves the precision of
the resulting model. In each modeling technique, Mr. Barker’s naming conventions
could be used, but analysts are not encouraged to do so.

For Design – The UML

While Mr. Barker’s notation is preferred as a requirements analysis tool, UML is more
complete and detailed, and therefore the most suited to support design – particularly
object-oriented design.

The method for annotating optionality and cardinality are much more expressive of
different circumstances than any of the other techniques. It can specifically say that an
occurrence of an entity is related to 1, 7-9, or 10 occurrences of another entity.

The UML can describe many more constraints between relationships than can other
notations. With proper annotation, it can describe both exclusive and inclusive or
relationships, or any other that can be named.

For business rules that are not simple relationships between two associations, UML
introduces a small flag that can include text describing any business rule.

Attributes can be described in more detail than in other notations.

Overlapping and incomplete configurations of sub-types are allowed.

“Multiple inheritance”, where a sub-type may be one of more than one super-types, is
permitted, as are multiple type hierarchies. While these may not be desirable in analysis
models, they could be useful as solutions to particular design problems.

In an object-oriented environment, the extra symbols address specific object-oriented
situations.

Summary

The ideal CASE tool, then, will be one which supports Mr. Barker’s techniques for doing
requirements analysis, then has the facilities for converting entity definitions into either
table definitions or class definitions that can be used by C++ or a similar language. It

Data Modeling — 52 — Syntactic Conventions
Copyright © Essential Strategies, Inc. (11/99)

would then have the ability to represent these design artifacts in the UML for further
refinement.

