Scaling WebLogic Server Topologies – Planning Considerations
Will Lyons

WebLogic Server Product Management

December 2011
Summary of Some Key Planning Considerations

WebLogic Server customers use a very diverse set of topologies for deploying and managing their applications. The good news is that WebLogic Server can handle a large variety of topologies from a technical perspective, and a large variety is exercised in the WebLogic Server customer base. However, which topology to use will be dependent on a variety of considerations.
· Requirements for application interdependence or independence. How much flexibility do you wish to retain to run, manage and maintain applications independent of each other.

· Management scaling considerations. Very large number of applications and servers within a single domain can be more difficult to manage than applications that have been partitioned in some manner to run on separate management domains.

· Performance and cluster scaling considerations. Clusters require interprocess communication among cluster members. This is not a significant consideration for the vast majority of WebLogic Server clustered deployments. However, as the number of servers grows very large, and under heavy application load, interprocess communication can affect application performance.

Example Topologies and How the Considerations Apply

To illustrate some of these topological considerations, let's discuss the "extreme" examples:
- 250 apps in a single cluster in a single domain
- 250 apps in 250 individual domains

1) 250 apps in a single cluster

Although we have customers doing this, this is generally an inappropriate approach. Some reasons why:

· Maximum application interdependence. Your entire architecture becomes vulnerable to the weakest link, or the most volatile application.
· If one of the apps is buggy, it can introduce problems that affect all of the other apps deployed to the same server(s).

· If there is a surge in demand/requests for one of the apps, that can affect all of the other apps deployed to the same server(s).

· If you need to maintain an app, you will undeploy/redeploy to the cluster or server(s), and that can affect all of the other apps.

· If you need to patch a server for that app, you (generally) must bring down the servers in the cluster, apply the patch and restart them, which is a potential source of disruption. Further, every app becomes vulnerable to unforeseen consequences from the patch applied for the "volatile" app.

· A configuration change for any single app requires a change to the domain configuration. These can be isolated to some degree, but there is potential for disruption.
· All apps are "locked in" to the same WebLogic version and patch set. You want to upgrade to a new version to take advantage of some new features for one of your apps? You need to upgrade the environment for all of your apps, which is a costly proposition.

· Management scaling issues

· There are a number of scaling issues driven by the (N apps) by (M managed servers) scaling problem. For the sake of an example, let's say that to support 250 apps you will need to scale up your cluster to 40 servers. There are a range of problems introduced by this. For example, let's say you want to maintain your applications. You have introduced so much interdependence among your applications that you may end up treating them like a single monolithic entity, so you give up the flexibility of deploying the applications independently (which can be a problem by itself), and decide to update them on a periodic basis. There may often be server patching requirements intermixed so you design a process to periodically reboot your servers and redeploy all of your applications. Server startup times will be dominated by application deployment times so this can take a while. So you end up with a process that imposes periodic downtime on all your applications, to accommodate a fairly complex (perhaps risky) operation of deploying 250 updated apps to 40 newly patched servers.
· Basic monitoring use cases get much more complex when you have to look at 10,000 app and server combinations and we have seen scaling limitations with this.

· There can also be scaling issues associated with edit session locks on the Admin Server.

· Raw performance and cluster scaling issues

· The aggregate performance requirements of all these apps may drive you to a cluster/domain deployment size of more than 50 managed servers. While there are many WebLogic Server clusters that are larger than 50 managed servers, they are atypical, with most clusters being much smaller (8 servers or less). We recommend a 32-server cluster (and 32-server domain) as a nominal limit for an application architecture. Clusters larger than this size are generally required only for the most demanding applications, and should be deployed only after specific analysis of application performance, management use cases, and long-term maintainability.
2) 250 apps in 250 individual domains

Although some customers design provisioning processes around this type of approach, there are overhead costs associated with this model, and in many cases this would be considered overkill.
· More servers than "really" required

· The recommended practice is to have a separate admin server (from the managed servers). If you have HA or any scaling requirements in your apps you typically deploy 2+ managed servers. So such a topological approach could lead to requirements for 3+ servers per domain, or 750+ servers being managed by 250 individual Admin Servers.

· Each of the domains and servers must be provisioned

· While this process can be automated, the sheer numbers of servers involved will require a disciplined approach to domain and server provisioning.
· Resource consumption

· Such an environment creates greater demand on system resources such as memory than an environment with applications shared across a smaller number of managed servers.

· Admin complexity associated with large numbers of Admin Servers.

· Ongoing monitoring, configuration, deployment and most lifecycle operations must be accomplished through 250 individual Admin Servers. Security considerations in particular make this a more complex admin environment than is desirable in most cases, particularly if there are ways of logically grouping applications that share common characteristics, such as common security, a common development team managing the apps, common business users, common HA requirements, etc. Maybe the individual deployment archives are actually components of the same business application from an end user perspective.
Suggestions

There is no single rule or algorithm to follow in designing WebLogic Server topologies. However, our most sophisticated customers are generally biased towards a model where domains are actively used for isolating applications. In other words, more domains rather than fewer.
As a starting point, applications with different business characteristics (and therefore different development teams, different business owners, different performance, HA, server patching, app maintenance, deployment, configuration management, monitoring and security requirements) should be segregated into different domains. For example keep your intranet apps, external but non-mission critical apps, and external mission-critical apps separate.

We recommend a 32-server cluster (and 32-server domain) as a nominal limit for an application architecture. Clusters and domains larger than this size are generally required only for the most demanding applications, and should be deployed only after specific analysis of application performance, management use cases, and long-term maintainability. If necessary, assess further partitioning of these applications into separate domains. In some cases an application may need this many servers, but this is rare and in any case such an app is typically mission critical and warrants special review.
We recommend using a (N apps) * (M managed servers) "metric" as part of your architectural evaluation, in order to highlight potentially problematic domains, and to identify opportunities for partitioning very large domains into smaller units, and to reduce this metric for any particular domain. For example:

· All 250 apps on a 40 managed server cluster/domain -> 10,000 apps*servers in this domain

· 250 apps into 4 different clusters/domains of 62 apps and 10 managed servers each -> 620 apps*servers per domain

· 250 apps into 10 different clusters/domains of 25 apps and 4 managed servers each -> 100 apps*servers per domain

· 250 apps into 25 different cluster/domains of 10 apps and 2 managed servers each -> 20 apps*servers per domain

· 250 apps into 250 different clusters/domains of 1 app and 2 managed servers each -> 2 apps*servers per domain

Some rough guidelines for what these metrics might indicate:
- 10,000 – An extremely complex domain environment which will be complex to maintain and manage over time, and should be partitioned into smaller domains.
- 1,000 - Moderately complex clusters/domains, further partitioning should be evaluated.
- 100 - Manageable environment if it meets customer needs
- 10 - Basic domains
- 1 - overly simplistic individual domains

For architectural reviews, and implementation planning and testing, you should ensure you have optimized the environment from a management scaling point of view. There are a number of WebLogic Server console settings which can be used to constrain how long the console will wait for slowly responding servers. See the blog http://blogs.oracle.com/WebLogicServer/entry/recent_improvements_in_console for more details.

Also check the My Oracle Support note:

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=PROBLEM&id=988132.1
Professional WebLogic Server (Wiley, 2010), contains a wealth of best practice information on configuring, tuning and managing WebLogic Server environments, and is a highly recommended resource,
Scaling WebLogic Server Topologies – Oracle Confidential
Page 1

