

Developing Applications for the Java EE 7 Platform 12 - 2

Every application that is accessible over the web or in business-to-business environments must
consider security. Your application must be protected from attack; the private data of your site’s
users must be kept confidential; and your services must also protect the clients and other servers.
Unfortunately, these considerations are never complete and security must always be viewed as a
level of protection, not absolute protection. Recognizing this, system administration should include
monitoring, so that when an attack occurs, it is noticed and can be stopped or the system
disconnected before any major damage occurs.
Because of the sheer complexity, scope, and importance of the security problem, consider using
specialist security experts in the creation of enterprise applications. However, each team member
should also have as much understanding of major issues as is practical.
Authentication can be as simple as prompting for a username and password. More complex systems
might make use of a public-key infrastructure to manage the certificate exchange. In the Java EE
model, authentication is carried out by containers and not by components.
Normally, it is necessary to authenticate a user before authorization can be checked, although an
unauthenticated user might be allowed to carry out certain operations. The Java EE model primarily
uses declarative authorization.
For confidentiality, the normal approach is to use encryption that is usually based on public-key
techniques.
Integrity is normally achieved by signing the data. That is, the security model encrypts a checksum of
the data and adds the encrypted checksum to the message to ensure that the message has not
been modified during transmission.
SSL is now formally known as transport layer security (TLS). The use of TLS for component
interactions is frequently standard in Java EE applications. Configuration of the transport is part of
the administration of the application server and is not normally visible to the application developer.

Developing Applications for the Java EE 7 Platform 12 - 3

Java EE security contains no reference to the real security infrastructure, so that the application may
be portable. JAAS (Java Authentication and Authorization Service) maps the application security
policies to the security domain of the deployment environment. Thus, platform-independence is
essentially preserved even though it becomes deployment-specific. JAAS implementations can
provide for simple username-password pairs that are stored in a database, up to more complex
systems such as Kerberos or Active Directory. In any case, the verification interface is standardized,
although the means of adding new users is not. JAAS provides end-to-end security, so that security
credentials are gathered in one part of the system, but are available to all parts. For example, if the
user is using a web browser to interact with a servlet-based application and that servlet application
calls enterprise beans, all the components (servlets and enterprise beans) that are invoked in a
particular user interaction see the same user.
This portable configuration is achieved with following steps:
• Java EE server administrators configure security policy domains based on pluggable security

service provider architecture, which enables various security providers, such as LDAP
servers.

• Security Server administrators manage information about users and groups.
• Java application developers define Application Roles and describe security constrains that

reference these Application Roles.
• Upon deployment Application Roles are mapped to actual users and groups defined by the

security provider configured with security policy domain.
• Application developers select a Login Module, which defines a mechanism that allows to

challenge the invoker to produce authentication.

Developing Applications for the Java EE 7 Platform 12 - 4

To access an application, a user or an application may have to respond to the authentication
challenge made by the Login Module.
• Security Principal is a user or system that is authenticated with such society provider.
• Once Security Principal is established it can then be authorized to use application resources

based on the mappings between this security principal and application roles that are
referenced by application security constraints.

• Unauthenticated invoker may also be granted access to application resources, if security
constraints allow that.

In addition to configuring authentication and authorization declaratively, developer can also use
programmatic authorization controls provisioned by JAAS API.

Developing Applications for the Java EE 7 Platform 12 - 5

Caller may access Login Module directly, or invocation of the Login Module can be triggered by the
server when caller tries to access a resource protected with security constraints.
Unsuccessful authentication will prevent caller from accessing resources. Even if a caller has been
successfully authenticated access to a resource can still be denied if the established Security
Principal has no permissions to access resources protected by security constrains.

Developing Applications for the Java EE 7 Platform 12 - 6

HTTP basic authentication requires that the server request a user name and password from the web
client and verify that the user name and password are valid by comparing them against a configured
security provider. Basic authentication is the default when you do not specify an authentication
mechanism.
• A client requests access to a protected resource.
• The web server returns a dialog box that requests the user name and password.
• The client submits the user name and password to the server.
• The server authenticates the user in the specified realm and, if successful, returns the

requested resource.
Like basic authentication, digest authentication authenticates a user based on a user name and a
password. However, unlike basic authentication, digest authentication does not send user
passwords over the network. Instead, the client sends a one-way cryptographic hash of the
password and additional data. Although passwords are not sent on the wire, digest authentication
requires that clear-text password equivalents be available to the authenticating container so that it
can validate received authenticators by calculating the expected digest.

Developing Applications for the Java EE 7 Platform 12 - 7

Form-based authentication allows the developer to control the look and feel of the login
authentication screens by customizing the login screen and error pages that an HTTP browser
presents to the end user. When form-based authentication is declared, the following actions occur.
• A client requests access to a protected resource.
• If the client is unauthenticated, the server redirects the client to a login page.
• The client submits the login form to the server.
• The server attempts to authenticate the user.

- If authentication succeeds, the authenticated user's principal is checked to ensure
that it is in a role that is authorized to access the resource. If the user is authorized,
the server redirects the client to the resource by using the stored URL path.

- If authentication fails, the client is forwarded or redirected to an error page.
With client authentication, the web server authenticates the client by using the client's public key
certificate. Client authentication is a more secure method of authentication than either basic or form-
based authentication. It uses HTTP over SSL (HTTPS), in which the server authenticates the client
using the client's public key certificate. SSL technology provides data encryption, server
authentication, message integrity, and optional client authentication for a TCP/IP connection. You
can think of a public key certificate as the digital equivalent of a passport. The certificate is issued by
a trusted organization, a certificate authority (CA), and provides identification for the bearer.
With mutual authentication, the server and the client authenticate each other. Mutual authentication
is of two types:
• Certificate-based:

- A client requests access to a protected resource.
- The web server presents its certificate to the client.
- The client verifies the server's certificate.
- If successful, the client sends its certificate to the server.
- The server verifies the client's credentials.
- If successful, the server grants access to the protected resource requested by the

client.
• User name/password-based:

- A client requests access to a protected resource.
- The web server presents its certificate to the client.
- The client verifies the server's certificate.
- If successful, the client sends its user name and password to the server.
- The server verifies the client's credentials
- If the verification is successful, the server grants access to the protected resource

requested by the client.

Developing Applications for the Java EE 7 Platform 12 - 8

An example of authenticate method of the HttpServletRequest object:

package demos;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class AuthTestServlet extends HttpServlet {
protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

request.authenticate(response);
out.println("Authenticate Successful");

} finally {
out.close();

}
}

}

Developing Applications for the Java EE 7 Platform 12 - 9

Developing Applications for the Java EE 7 Platform 12 - 10

Java defines a number of security annotations:
• PermitAll - indicates that the given method or all business methods of an EJB are accessible

by everyone
• DenyAll - indicates that the given method in the EJB cannot be accessed by anyone
• RolesAllowed - Indicates that the given method or all business methods in the EJB can be

accessed by users associated with the list of roles
• DeclareRoles - Used by both Servlets and EJBs to define application security roles
• RunAs - Used by both Servlets and EJBs to specify the run-as role for the given components.

By default components assume they are executed with the identity of the invoker

Developing Applications for the Java EE 7 Platform 12 - 11

A web container managed resources can describe security constraints restarted to specific HTTP
Methods. In the following example, only the POST method is restricted to the role customer:
<security-constraint>
<display-name>Customer Product Permission</display-name>
<web-resource-collection>
<url-pattern>/product/*</url-pattern>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>
<role-name>customer</role-name>

</auth-constraint>
</security-constraint>

Or in this example annotations are configured to allow GET Method to be invoked by everyone and
POST Method only by members of the employee role:
@WebServlet("/products")
@ServletSecurity(

httpMethodConstraints={@HttpMethodConstraint("GET"),
@HttpMethodConstraint(value="POST", rolesAllowed={"employee"}))

public class ProductServlet extends HttpServlet {...}

Developing Applications for the Java EE 7 Platform 12 - 12

Generally it is preferable to utilize declarative security in Java EE applications. However, with
declarative approach security constraint may be too coarse gained. In the EJB module you may wish
to programmatically access information about caller identity to provide audit information, such as
recording user audit data into the database. When declaring security constraints for the Web UI, you
may use a programmatic approach to define security permission for a specific fragment of the page
or JSF component.

Developing Applications for the Java EE 7 Platform 12 - 13

Developing Applications for the Java EE 7 Platform 12 - 14

OASIS group is a consortium that defines standards used by web services, including WS-Security
specification. For more information see: https://www.oasis-open.org
W3C XML Signature specification http://www.w3.org/Signature/
W3C XML Encryption specification http://www.w3.org/Encryption/2001/

Developing Applications for the Java EE 7 Platform 12 - 15

Developing Applications for the Java EE 7 Platform 12 - 16

Developing Applications for the Java EE 7 Platform 12 - 17

