

Developing Applications for the Java EE 7 Platform 9 - 2

REST is centered around an abstraction known as a "resource." Any named piece of information can
be a resource.
A resource is identified by a uniform resource identifier (URI).
Clients request and submit representations of resources.
There can be many different representations available to represent the same resource.
A representation consists of data and metadata. – Metadata often takes the form of HTTP headers.
Resources are interconnected by hyperlinks.
A RESTful web service is designed by identifying the resources. This is similar to Object Oriented
Analysis and Design where you identify nouns in use-cases.
Unlike SOAP Services, there is no standard for REST Services. REST is considered to be a style of
coding rather than an actual protocol.

Developing Applications for the Java EE 7 Platform 9 - 3

Developing Applications for the Java EE 7 Platform 9 - 4

JAX-RS is a Java programming language API designed to make it easy to develop applications that
use the REST architecture.
The JAX-RS API uses Java programming language annotations to simplify the development of
RESTful web services. Developers decorate Java programming language class files with JAX-RS
annotations to define resources and the actions that can be performed on those resources. JAX-RS
annotations are runtime annotations; therefore, runtime reflection will generate the helper classes
and artefacts for the resource. A Java EE application archive containing JAX-RS resource classes
will have the resources configured, the helper classes and artefacts generated, and the resource
exposed to clients by deploying the archive to a Java EE server.
A JAX-RS application consists of at least one resource class packaged within a WAR file. The base
URI from which an application's resources respond to requests can be set one of two ways:
Using the @ApplicationPath annotation in a subclass of javax.ws.rs.core.Application packaged
within the WAR. By default, all the resources in an archive will be processed for resources. Override
the getClasses method to manually register the resource classes in the application with the JAX-RS
runtime.

package demos.ws;

import java.util.Set;
import javax.ws.rs.core.Application;

Developing Applications for the Java EE 7 Platform 9 - 5

@ApplicationPath("/YourRESTService")
public class MyApplication extends Application {

@Override
public Set<Class<?>> getClasses() {

final Set<Class<?>> classes = new HashSet<>();
classes.add(Products.class);
return classes;

}
@Override
public Set<Object> getSingletons() {

return super.getSingletons();
}

}

Or instead of the @ApplicationPath annotating use the servlet-mapping tag within the WAR's
web.xml deployment descriptor

<servlet-mapping>
<servlet-name>demos.ws.ApplicationConfig</servlet-name>
<url-pattern>/YourRESTService/*</url-pattern>

</servlet-mapping>

All root resource classes (classes with @Path("") at the class level) will appear under the path value
in the @ApplicationPath("") annotation. If you have only one root resource class, you can use
@Path("/") to make the root resource available at the path in the @ApplicationPath("resources")
annotation.
Root resource classes can be POJOs, CDI-managed beans, and stateless and singleton session
beans. The JAX-RS implementation will obtain your root resource class from an Application
subclass.
If the class is returned from getClasses():
• JAX-RS will create an instance-per-request
• Perform a JAX-RS dependency inject
• Call any @PostConstruct methods
• Call the resource or resource-locator method

If the class is returned from getSingletons():
• It is expected to be a singleton
• It is typically used for providers instead of resources

Developing Applications for the Java EE 7 Platform 9 - 6

By default, the URI variable must match the regular expression "[^/]+?". This variable may be
customized by specifying a different regular expression after the variable name. For example, if a
user name must consist only of lowercase and uppercase alphanumeric characters, override the
default regular expression in the variable definition:By default, the URI variable must match the
regular expression "[^/]+?". This variable may be customized by specifying a different regular
expression after the variable name. If provided value does not match specified expression, a 404
(Not Found) response will be sent to the client.

Developing Applications for the Java EE 7 Platform 9 - 7

It is possible that some REST services may use POST method not only to create new, but also to
update existing elements. However, it implies that client did not provide an element id. Therefore,
server should be able assign new id to an element if it is creating it, or to determine which element to
update without id supplied by the client. In a similar way PUT method can be used to create as well
as update elements. When using PUT method client is supposed to provide an element id.
JAX-RS API provides default implementation for HEAD and OPTIONS HTTP Methods:
• HEAD by default invokes the implemented GET method (if present) and ignores the response

entity (if set). This method can be used for obtaining metadata about the entity implied by the
request without transferring the entity-body itself. It is often used for testing URL links for
validity, accessibility, and recent modification. The response to a HEAD request may be
cacheable in the sense that the information contained in the response may be used to update
a previously cached entity from that resource. If the new field values indicate that the cached
entity differs from the current entity (as would be indicated by a change in Content-Length,
Content-MD5, ETag or Last-Modified), then the cache MUST treat the cache entry as stale.

• OPTIONS by default produce a list HTTP methods supported by the resource and return
Web Application Definition Language (WADL)

Developing Applications for the Java EE 7 Platform 9 - 8

The @Produces and @Consumes annotations can be placed at the class level to define defaults for
all class methods.
Adding the annotations at the method level overrides the class-level default. A method may both
produce and consume content (depending on the HTTP method).
The @Produces and @Consumes annotations expect a string array for their value attribute:
@Produces({"text/plain", "text/html"})
Use MediaType constants to avoid typos: @Produces({MediaType.TEXT_HTML,
MediaType.TEXT_PLAIN})
Internally, JAX-RS uses a MessageBodyReader and MessageBodyWriter to convert the HTTP body
to and from a Java object.
• MessageBodyReader converts the HTTP body from the entity stream to a Java object (param

method).
• MessageBodyWriter converts the HTTP body from a Java object to an entity stream (return

method).
A RESTful service will typically produce and consume XML or JSON. XML support is provided by
JAXB.

Developing Applications for the Java EE 7 Platform 9 - 9

The supported entity types are:
• byte[] – All media types (*/*)
• java.lang.String – All media types (*/*)
• java.io.InputStream – All media types (*/*)
• java.io.Reader – All media types (*/*)
• java.io.File – All media types (*/*)
• javax.activation.DataSource – All media types (*/*)
• javax.xml.transform.Source – XML types (text/xml, application/xml and media types of the

form application/*+xml)
• javax.xml.bind.JAXBElement and application-supplied JAXB classes XML types – (text/xml

and application/xml and media types of the form application/*+xml)
• MultivaluedMap<String,String> – Form content (application/x-www-form- urlencoded)
• StreamingOutput – All media types (*/*), MessageBodyWriter only
• java.lang.Boolean, java.lang.Character, java.lang.Number – Only for text/plain.

Corresponding primitive types supported via boxing/unboxing conversion.
• JsonStructure, JsonObject, and JsonArray – (application/json) On platforms that support

JSON-P

Developing Applications for the Java EE 7 Platform 9 - 10

You can combine any number of parameter types (including an unannotated body param) when
declaring method arguments.
The @DefaultValue("value") annotation can be used in combination with the @*Param annotations
to supply a default value when the input element is missing.
Declarations of parameters typically appear as method parameters of a resource method; however,
they may also appear as constructor parameters, fields, or bean properties.

Developing Applications for the Java EE 7 Platform 9 - 11

You can use Bean Validation API with JAX-RS Services in exactly same way as you used it with
JPA Entities
When a validation error occurs, a javax.validation.ValidationException or subclass is thrown. JAX-
RS implementations must include an exception mapper, which maps a ValidationException to either
a 400 (Bad Request) or 500 (Internal Server Error).

Developing Applications for the Java EE 7 Platform 9 - 12

Status.NOT_FOUND represents an HTTP 404 error code. Therefore this code returns the same
status:
ResponseBuilder rb = Response.status(404);
return rb.build();
or
throw new WebApplicationException(404);
or
throw new WebApplicationException(Response.Status.NOT_FOUND);
or
throw new NotFoundException();

Developing Applications for the Java EE 7 Platform 9 - 13

NotFoundException is a subclass of the WebApplicationException. Other subclasses of the
WebApplicationException class include:

BadRequestException 400 Malformed message
NotAuthorizedException 401 Authentication failure
ForbiddenException 403 Not permitted to access
NotFoundException 404 Couldn’t find resource
NotAllowedException 405 HTTP method not supported
NotAcceptableException 406 Client media type requested not supported
NotSupportedException 415 Client posted media type not supported
InternalServerErrorException 500 General server error
ServiceUnavailableException 503 Server is temporarily unavailable or busy

Automatic mapping of Java Exceptions to Response objects is defined by the ExceptionMapper
interface.
Providers implementing ExceptionMapper contract must be either programmatically registered in a
JAX-RS runtime or must be annotated with @Provider annotation to be automatically discovered by
the JAX-RS runtime during a provider scanning phase. It defines toResponse(E exception) operation
that maps an Exception to a Response. Returning null results in a Response.Status.NO_CONTENT
response. Throwing a runtime exception results in a
Response.Status.INTERNAL_SERVER_ERROR response.
If in your application you have designed a custom exception (ProductNotFoundException), then it
should be mapped to specific HTTP response code using a mapper:
@Provider
public class ProductNotFoundMapper

implements ExceptionMapper<ProductNotFoundException> {

public Response toResponse(ProductNotFoundException e) {
return Response.status(Response.Status.NOT_FOUND).build();

}
}

Developing Applications for the Java EE 7 Platform 9 - 14

Suspended annotation injects a suspended AsyncResponse into a parameter of an invoked JAX-RS
resource or sub-resource method.
The injected AsyncResponse instance is bound to the processing of the active request and can be
used to resume the request processing when a response is available.
By default there is no suspend timeout set and the asynchronous response is suspended indefinitely.
The suspend timeout as well as a custom timeout handler can be specified programmatically using
the AsyncResponse.setTimeout(long, TimeUnit) and
AsyncResponse.setTimeoutHandler(TimeoutHandler) methods.
AsyncResponse has following capabilities:
Produce response that is either a normal response or an error with the fowling pair of methods:
• resume(Object response) - Resume the suspended request processing using the provided

response data
• resume(Throwable response) - Resume the suspended request processing using the

provided throwable

Developing Applications for the Java EE 7 Platform 9 - 15

Cancel production of Response
• cancel() - Cancel the suspended request processing
• cancel(Date retryAfter) - Cancel the suspended request processing and set Retry-After

header as a point in time
• cancel(int retryAfter) - Cancel the suspended request processing and set Retry-After

header as a period of time in seconds
Set timeout and timeout handler
• setTimeout(long time, TimeUnit unit) - Set/update the suspend timeout.
• setTimeoutHandler(TimeoutHandler handler) - Set/replace a time-out handler for the

suspended asynchronous response.
Find out status of the Response
• isCancelled() - Check if the asynchronous response instance has been cancelled
• isDone() - Check if the processing of a request this asynchronous response instance

belongs to has finished
• isSuspended() - Check if the asynchronous response instance is in a suspended state

Register asynchronous processing lifecycle callback classes to receive lifecycle events for the
asynchronous response based on the implemented callback interfaces
• register(Class<?> callback, Class<?>... callbacks)
• register(Object callback)
• register(Object callback, Object... callbacks)

CompletionCallback interface defines onComplete(Throwable throwable) operation that describes a
completion callback notification method that will be invoked when the request processing is finished,
after a response is processed and is sent back to the client or when an unmapped throwable has
been propagated to the hosting I/O container.
An unmapped throwable is propagated to the hosting I/O container in case no exception mapper has
been found for a throwable indicating a request processing failure. In this case a non-null unmapped
throwable instance is passed to the method. Note that the throwable instance represents the actual
unmapped exception thrown during the request processing, before it has been wrapped into an I/O
container-specific exception that was used to propagate the throwable to the hosting I/O container. If
Throwable parameter is null it indicates that the request processing has been completed and a
response that has been sent to the client.

Developing Applications for the Java EE 7 Platform 9 - 16

Developing Applications for the Java EE 7 Platform 9 - 17

Developing Applications for the Java EE 7 Platform 9 - 18

Developing Applications for the Java EE 7 Platform 9 - 19

Developing Applications for the Java EE 7 Platform 9 - 20

Developing Applications for the Java EE 7 Platform 9 - 21

