

Java EE 7: Back-end Server Application Development 4 - 2

XML describes data objects called XML documents that:
• Are composed of markup language for structuring the document data
• Support custom tags for data definition, transmission, validation, and interpretation
• Have become a standard way to describe data on the web
• Are processed by XML processors

XML was developed by an XML working group headed by the World Wide Web Consortium
(W3C) with the following design goals:
• XML is usable over the Internet.
• It supports a wide variety of applications.
• It is compatible with Standard Generalized Markup Language (SGML).
• XML can be processed by using easy-to-write programs.
• It has a minimum number of optional features.
• XML is human-legible and reasonably clear.
• XML enables quick design preparation.
• It enables formal and concise design.
• XML documents are easy to create.
• XML documents can be verbose.

Java EE 7: Back-end Server Application Development 4 - 3

XML’s strongest point is its ability to perform data interchange. Because different groups of
people rarely standardize on a single set of tools, it takes a significant amount of work for two
groups to communicate. XML makes it easy to send structured data across the web so that
nothing gets lost in translation.
When using XML, you can receive XML-tagged data from your system and you can receive
XML-tagged data from another system. Neither of the users has to know how the other user’s
system is organized. If another partner or supplier teams up with your organization, you do
not have to write code to exchange data with their system. You simply require them to follow
the document rules defined in the document type definition (DTD). You can also transform
those documents by using XSLT.
The slide shows a simple example of an XML document that contains a list of book titles. The
XML document can be embellished or restructured depending on how it will be used.

Java EE 7: Back-end Server Application Development 4 - 4

Many businesses today are becoming e-businesses. The greatest barrier to this
transformation is application-to-application communication. An enterprise system usually has
multiple applications, each running on different hardware, and sometimes implemented in
different languages. These applications often need to exchange data with one another, and
developers must write additional code to make this integration possible. A web service is a
technology (based on a set of standards) that provides a solution for application-to-application
communication and enterprise application integration.
Using web services, clients and servers can communicate over standard Internet protocols,
regardless of the platform or programming language. Developers can write their business
functionality in any language and on any platform.
To be exposed and accessed as web services, the applications must be developed according
to the standards used by web services. Web services standards use the core concept of XML-
based representation to carry out information exchange between service providers and
requestors.
Simple Object Access Protocol (SOAP) is a lightweight, XML-based protocol for exchanging
data in a distributed environment. The definition of SOAP is in XML and places no restriction
on the format.

Java EE 7: Back-end Server Application Development 4 - 5

An XML document contains the following parts:
• The prologue, which may contain the following information:

- XML declaration (optional in XML 1.0, mandatory in XML 1.1)
- Document type definition (DTD), which is required only to validate the document

structure, e.g.:
<!DOCTYPE employees [

<!ELEMENT employee (#PCDATA)>

]>

- Processing instructions and comments, which are optional
• The root element, which is also called the “document element” and contains all other

elements
Processing instructions give commands or information to an application that processes the
XML data.
Processing instructions have the format <?target instructions?>, where target is the
name of the application that is expected to do the processing, and the instructions consist of a
string of characters that embody the information or commands for the application to process.

Java EE 7: Back-end Server Application Development 4 - 6

Processing instructions can be written in the prologue, or root element of an XML
document.

Java EE 7: Back-end Server Application Development 4 - 6

It is generally recommended that you start an XML document with an XML declaration. If it is
present, it must be the first line in the document. Although the XML declaration resembles a
processing instruction, it is really a simple declaration. In the XML 1.0 specifications, an XML
document does not require the XML declaration. However, in the XML 1.1 specifications, the
XML declaration is mandatory.
Note: Not all tools and XML Parsers support the XML 1.1 syntax.
The only attribute that is mandatory in the declaration is the version attribute. Additional
attributes that can be added to the XML declaration include the following:
• encoding attribute, which is optional. By default, XML documents are encoded in the

UTF-8 format of the Unicode character set.
• standalone attribute, which is optional and may be set to the yes or no value. If

omitted, the value is assumed to be no. Set the standalone value to:
- No, if an application requires an external DTD to determine proper document

structure
- Yes, when the document does not have a DTD, does not change the document

content, or if the DTD is internal

Java EE 7: Back-end Server Application Development 4 - 7

An XML document comprises storage units that contain parsed or unparsed data.
Parsed character data (PCDATA) is textual information comprising the following:
• The markup that describes the data it contains. Markup includes:

- Elements to describe the data it contains such as the root element (employees)
and its child elements (employee, name)

- Attributes, which are name and value pairs (id="100") included in the start tag of
an element

- The entities (') representing any character data substituted in place of their
appearance

• The character data described by the markup components, for example:
- The value 100 assigned to the ID attribute
- The data Rachael O’Leary that is described by the <name> element
- The ' entity, which represents the apostrophe (') character

Note: The element tree in an XML document defines its layout and logical structure.

Java EE 7: Back-end Server Application Development 4 - 8

There is one root element, which is sometimes called the top-level or document element.
All elements:
• Must have matching start and end tags, or be a self-closing tag (an empty element)
• Can contain nested elements so that their tags do not overlap
• Have case-sensitive tag names that are subject to naming conventions (starting with a

letter, no spaces, and not starting with the letters xml)
• May contain white space (spaces, tabs, new lines, and combinations of them) that is

considered part of the element data content
Markup Rules for Elements
Every XML document must contain one root element (top-level or document element). XML
documents are hierarchical in structure with elements nested within others to form a
document tree. The start and end tags for elements must not overlap.

Java EE 7: Back-end Server Application Development 4 - 9

Attributes are simple name-value pairs that are associated with a particular element. XML
attributes must be specified after the start tag of an element or after the tag name of an empty
element.
Example: <employee id="100" email="SKING"/>

Attribute names are case-sensitive and follow the naming rules that apply to element names.
In general, spaces are not used, but are allowed on either side of the equal sign. Attribute
names should be unique within the start tag.
Attribute values must be within matching quotation marks, either single or double.
Naming Convention Rules for Elements and Attribute Names
• Can contain the letters A–Z and a–z
• Can contain the numbers 0–9
• Can contain ideograms and non-English characters
• Can contain _ (underscore), - (dash), and . (period)
• Must start with letters or an "_"
• Cannot start with a number, punctuation character, or the letters xml (or XML, Xml, and

so on)
• Cannot contain spaces

Java EE 7: Back-end Server Application Development 4 - 10

• Can use any name. No words are reserved.

Java EE 7: Back-end Server Application Development 4 - 10

In the slide, you see two examples:
1. In Example 1, id, last_name, and salary are defined as elements within the

employee element, whose parent is the employees element.
2. In Example 2, id, last_name, and salary are attributes of the employee element,

whose root element is employees.
Elements and attributes accomplish approximately the same thing; that is, they describe data.
The examples shown in the slide are both valid and communicate the same basic information
about an employee.
Note: In general, elements are more robust and flexible to use than attributes.
The choice to use elements or attributes is often a matter of preference, but it takes some
time and experience to determine the best style to use for different contexts. The easiest and
most consistent approach is to use elements for data that the user of the document wants to
see, and attributes for metadata representing additional information about the data that the
document may require. The following are additional points to consider:
• Elements are more easily added as your requirements expand.
• Elements may be ordered, but attributes are returned unordered from the document.
• Elements can be structured and may contain other elements.

Java EE 7: Back-end Server Application Development 4 - 11

• Attributes are atomic; that is, they cannot be nested or have attributes of their
own.

Java EE 7: Back-end Server Application Development 4 - 11

An XML document must be well formed to guarantee that it is correctly structured and
adheres to the rules defined in the slide. The slide contains a list of the most common rules
for well-formed documents, but it is not a complete list.
Note: The less-than (<) and ampersand (&) characters are special in XML and cannot appear
as themselves within the character data part of an element, or the value of an attribute. In
character data and attribute values, an XML Parser recognizes:
• The less-than (<) sign as a character that introduces the start tag of another element
• The ampersand (&) as an escape character before an entity name terminated by a

semicolon (;)
Therefore, to include special characters in the character data of an element or attribute value,
you must use built-in XML entity names for the special characters. For example, use < to
include the less-than character, and & for the ampersand character. The XML Parser
replaces the entity reference with its textual or binary representation, as discussed earlier in
this lesson.
Note: The XML 1.1 specification requires the XML declaration to appear at the beginning of
the document. However, the declaration is optional in XML 1.0.

Java EE 7: Back-end Server Application Development 4 - 12

An XML document need not follow any rules beyond the well-formedness criteria laid out in
the XML 1.0 specification. To exchange documents in a meaningful way, however, requires
that their structure and content be described and constrained so that the various parties
involved will interpret them correctly and consistently. This can be accomplished through the
use of a schema.
• XML Schemas define the allowed elements and attributes along with their types.
• XML Schemas are themselves XML documents.
• XML documents specify the schemas they are constrained by.
• Developer created XML schemas, being XML documents, can be constrained by an

XML schema – a schema for schemas. http://www.w3.org/2012/04/datatypes.xsd

Java EE 7: Back-end Server Application Development 4 - 13

The built-in data types that can be specified in the type attribute are listed in the following
table:

SimpleType Example or Explanation
string “this is a string”

boolean true, false

float single-precision floating point

double double-precision 64-bit floating point

decimal 123.45

Integer -12345; 0; 12345

non-positive-integer 12345; 0

negative-integer -12345

int 123456789

short 12345

Java EE 7: Back-end Server Application Development 4 - 14

The example in the slide defines an XML namespace. The component parts can be defined
as:

• xmlns: Is a special attribute that is used to define a namespace. The attribute can be
used more than once in a definition as long as the prefix is different for each definition.

• address: Defines the prefix that is used for the vocabulary. Any elements that use this
prefix are part of this vocabulary.

• http://example.com/address: Is a unique identifier that defines this vocabulary.
This could be any string, for example: 123-46-6789. However, by convention, this is
typically a URL. Generally, information about the vocabulary can be found at the URL
provided.

When the XML namespace is used, each tag name is preceded by the prefix:
<address:person>

The tag name that follows the colon (person in the preceding example) is known as the local
name. The <prefix:local> form creates a qualified name or QName.
The prefix should describe the vocabulary used or provide an acronym for the vocabulary. In
this example, an address-related vocabulary is defined.

Java EE 7: Back-end Server Application Development 4 - 15

The best practice is to place all your namespace declarations at the top of your documents.

Java EE 7: Back-end Server Application Development 4 - 16

Both the SAX and DOM processing models are low level and can result in very verbose code.
If you want to read XML documents and cannot use JAXB (because the XML syntax is not
known at compile time), using StAX should be your first consideration.
• SAX (a streaming push parser model) is extremely fast and has a low memory footprint,

but is probably the most challenging method to process XML in Java.
• DOM provides an object tree in memory and is easier to program against than SAX, but

consumes more memory.
• StAX (a streaming pull parser model) is different than SAX in that instead of having the

parser fire events, you request the next event by calling next().

Java EE 7: Back-end Server Application Development 4 - 17

Binding
Binding a schema means generating a set of Java classes that represents the schema. All
JAXB implementations provide a tool called a binding compiler to bind a schema (the way the
binding compiler is invoked can be implementation-specific).

Java EE 7: Back-end Server Application Development 4 - 18

The general steps in the JAXB data binding process are:
• Generate classes: An XML Schema is used as input to the JAXB binding compiler to

generate JAXB classes based on that schema.
• Unmarshal: The XML documents that are written according to the constraints in the

source schema are unmarshalled by the JAXB binding framework.
• Generate content tree: The unmarshalling process generates a content tree of data

objects instantiated from the generated JAXB classes. This content tree represents the
structure and content of the source XML documents.

• Validate (optional): The unmarshalling process involves validation of the source XML
documents before generating the content tree. Note that if you modify the content tree in
the Process Content step, you can also use the JAXB Validate operation to validate the
changes before marshalling the content back to an XML document.

• Process content: The client application can modify the XML data represented by the
Java content tree by using the interfaces generated by the binding compiler.

• Marshal: The processed content tree is marshalled out to one or more XML output
documents. The content may be validated before marshalling.

Java EE 7: Back-end Server Application Development 4 - 19

@XmlRootElement

The @XmlRootElement annotation is used to indicate that a class is used as a global (root)
XML element.
@XmlRootElement(name="human")

public class Person { /* … */

Corresponds to an XML Schema of:
<xs:element name="human" type="person"/>

<xs:complexType name="person">

<!-- ... -->

</xs:complexType>

Java EE 7: Back-end Server Application Development 4 - 20

Unmarshalling the Document
Unmarshalling an XML document means creating a tree of content objects that represents the
content and organization of the document. Unmarshalling provides a client application the
ability to convert XML data into JAXB-derived Java objects.
To unmarshal an XML document, perform the following steps:

1. Create a JAXBContext object. This object provides the entry point to the JAXB API.
When you create the object, you need to specify a context path. This is a list of one or
more package names that contain interfaces generated by the binding compiler.

2. Create an Unmarshaller object. This object controls the process of unmarshalling. In
particular, it contains methods that perform the actual unmarshalling operation.

3. Call the unmarshal method. This method does the actual unmarshalling of the XML
document. In the example in the slide, the Unmarshaller instance (u) unmarshalls the
XML data in thesimple-read.xml file.

4. Use the get methods in the schema-derived classes to access the XML data.

Java EE 7: Back-end Server Application Development 4 - 21

Marshalling
Marshalling is the opposite of unmarshalling. It creates an XML document from a content tree.
Marshalling provides a client application the ability to convert a JAXB-derived Java object tree
into XML data. To marshal a content tree, perform the following:

• Create a JAXBContext object and specify the appropriate context path—that is, the
package that contains the classes and interfaces for the bound schema.

• Create a Marshaller object. This object controls the process of marshalling. In
particular, it contains methods that perform the actual marshalling operation.

• Call the marshal method. This method does the actual marshalling of the content tree.
When you call the method, you specify an object that contains the root of the content
tree, and the output target.

Java EE 7: Back-end Server Application Development 4 - 22

person.xsd XML Schema
<xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" targetNamespace="urn:example">

<xs:element name="person">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Java EE 7: Back-end Server Application Development 4 - 23

JAXB does not require an XML Schema file for reading or writing unless you want to perform
validation.

Java EE 7: Back-end Server Application Development 4 - 24

When supplying a string of package names, the following are applicable:
• Multiple package names can be supplied by separating the package names with colons

JAXBContext jc = JAXBContext.newInstance("ou.schema:ou.other");

• Every package specified must contain either of the following:
- An ObjectFactory.java that is annotated with @XmlRegistry and contains a

factory method for each Java class that is bound to an XML type
- A jaxb.index file. The jaxb.index file contains a list of JAXB-bound class

names (short name without package), one class name per line.
Did you know that you can switch JAXB implementations? EclipseLink Moxy is one available
JAXB implementation. Moxy has additional features such as support for external binding files
and JSON reading and writing. When you create a new JAXBContext instance, several
checks are made to see if you have configured an alternative JAXB implementation. For more
information, see the section titled “Discovery of JAXB Implementation” at
http://docs.oracle.com/javase/7/docs/api/javax/xml/bind/JAXBContext.html and
http://www.eclipse.org/eclipselink/moxy.php.

Java EE 7: Back-end Server Application Development 4 - 25

Java EE 7: Back-end Server Application Development 4 - 26

Java EE 7: Back-end Server Application Development 4 - 27

The @XmlType annotation can be used along with the @XmlRootElement or without it.
When used without @XmlRootElement, the @XmlType annotation corresponds to a named
global complexType but not a root element.
The code example in the slide corresponds to an XML Schema of
<xs:element name="human" type="individual"/>

<xs:complexType name="individual">

<xs:sequence>

<xs:element name="name" type="xs:string" minOccurs="0"/>

<xs:element name="address" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

You can map a Java class to a nested or anonymous complexType by using a zero-length
string for the name attribute value.
@XmlType(name="", propOrder={"name", "address"})

Java EE 7: Back-end Server Application Development 4 - 28

The XML accessor type defines default behavior. You may override the specified behavior on
class members by applying JAXB annotations on fields or getter/setter method pairs. The
@XmlTransient annotation on a field, or getter/setter, indicates that the member should not
be mapped to XML. Using other annotations such as @XmlValue, @XmlAttribute, or
@XmlElement instructs JAXB to map the member to XML even if the XML accessor type
excludes the member from mapping.

Java EE 7: Back-end Server Application Development 4 - 29

The XSD will contain:
<xs:element name="first-name" type="xs:string" minOccurs="1"/>

Java EE 7: Back-end Server Application Development 4 - 30

Java EE 7: Back-end Server Application Development 4 - 31

Java EE 7: Back-end Server Application Development 4 - 32

When running xjc on an XML Schema to generate Java classes, if you have enumerated
values that start with numbers, they will be renamed. For example, "1" becomes "value1".

Java EE 7: Back-end Server Application Development 4 - 33

Java EE 7: Back-end Server Application Development 4 - 34

Java EE 7: Back-end Server Application Development 4 - 35

Java EE 7: Back-end Server Application Development 4 - 36

Answer: a, d

Java EE 7: Back-end Server Application Development 4 - 37

Answer: b

Java EE 7: Back-end Server Application Development 4 - 38

Answer: d

Java EE 7: Back-end Server Application Development 4 - 39

Java EE 7: Back-end Server Application Development 4 - 40

Java EE 7: Back-end Server Application Development 4 - 41

