Java Support for JSON

« JavaScript Object Notation (JSON) is commonly used by
RESTful web services and WebSocket applications.

« Just as with XML parsing, there are several ways to parse and
generate JSON from within Java applications.
— The Java API for JSON Processing (JSON-P) JSR 353:
Provides APIs similar to StAX and DOM for JSON
Is the only standard JSON API so far
— JSON to Java Object Binding

EclipseLink MOXy supports binding POJO and JAXB-annotated
objects to JSON.

B

Third-party Java JSON libraries, such as Gson, have been around for years. However, JSON
APIs are now starting to become the official components of the Java platform by using the
JEP/JSR process. JSON-P was released as part of Java EE 7 and several other JSON
standards are under development:

* JSR 367: Java API for JSON Binding (JSON-B): This API will standardize JSON to
Java binding similar to what JAXB does for XML. It is currently scheduled for release as
a Java EE 8 component. For more, see https://icp.org/en/jsr/detail ?id=367.

+ JEP 198: Light-Weight JSON API: This API provides a lightweight JSON library under
java.util and is under consideration for Java SE 9. For more, see
http://openjdk.java.net/jeps/198.

Java EE 7: Front-end Web Application Development 10 -1



Java API for JSON Processing (JSON-P)

The following are the primary JSON-P classes.
» Streaming JSON classes:
— JsonParser — A pull parser for reading JSON data
JsonGenerator — A JSON generator that uses method
chaining

* Object-based JSON classes:
— JsonReader — Reads from an InputStream and produces

an obJect graph
— JsonWriter — Writes a JSON-P-specific object graph to an

OutputStream

B

The streaming classes parse or generate JSON as the data streams through your application
eliminating the need to have all of the JSON data in memory as objects.

The object-based JSON reader or writer classes use JSON-P class types to represent JSON
constructs.

* JsonStructure — The common JSON object supertype
* JsonObject — A JSON object that uses string keys to uniquely identify values
 JsonArray — A JSON object that uses int index values to uniquely identify values

Java EE 7: Front-end Web Application Development 10 -2



JsonGenerator

JsonGenerator jgen = Json.createGenerator (System.out);

jgen.writeStartObject ()
.writeStartArray ("persons")
.writeStartObject ()
.write ("firstName", "Sherlock")
.write ("lastName", "Holmes")
.writeStartObject ("address")
.write ("street", "221b Baker
.write("city", "London")
.write ("country", "England")
.writeEnd ()
.writeEnd()
.writeEnd ()
.writekEnd () ;

jgen.flush () ;

Street")

/

A JsonGenerator builds JSON text by using method chaining and writes it to an
OutputStreamoraWriter.

Java EE 7: Front-end Web Application Development 10 -3




case VALUE STRING:

System.out.print (jp.getString());

o /

A JsonParser converts JSON text into a sequence of events. It is a fast, low-level method
for parsing JSON without loading the JSON data into an object graph.

Java EE 7: Front-end Web Application Development 10 -4



JsonWriter

//:;;nWriter jw = Json.createWriter (System.out) ;

JsonObject address = Json.createObjectBuilder ()

.add ("street", "221b Baker Street")
.ouild();

JsonObject sherlock = Json.createObjectBuilder ()
.add("firstName", "Sherlock")
.add ("address", address)
Jouild();

JsonArray persons = Json.createlArrayBuillder ()
.add (sherlock)
.build();

JsonObject root = Json.createObjectBuilder()

.add ("persons", persons)

Lbuild();

jw.write (root); 4////

A JsonWriter builds an object graph of JSON-specific objects, and then writes that object
graph as JSON text to an OutputStreamoraWriter.

Java EE 7: Front-end Web Application Development 10 -5



JsonReader

//j;onﬁcador jr =

Json.createReader (new FileInputStream("data.json"));

JsonObject root = jr.readObject():
JsonArray persons = root.getJdJsonArray("persons"):;
if (persons != null) {
for (JsonValue value : persons) {
if (value.getValueType () ==
JsonValue.ValueType.OBJECT) {
JsonObject person = (JsonObject) wvalue;

String n = person.getString("firstName") ;

JsonObject address =
person.getJsonObject ("address") ;

if (address != null) {

String s = address.getString("street");

A JsonReader converts JSON text into an object graph. The object types in the graph are
the same as those used by JsonReader.

Java EE 7: Front-end Web Application Development 10 -6



Java API for WebSocket Support for JSON

Use java.io.StringReader and java.io.StringWriter
along with JSON-P to support JSON in Java WebSocket
endpoints.

= session.getAsyncRemote () ;
SW = new StringWriter():;
JsonWriter jw = Json.createWriter (sw);
J bject st = Json.createObjectBuilder ()
add ("symbol", m)

.add ("price", price)
.build();

jw.writeObject (stock);

remote.sendText (sw.toString()); ,//

B

The Java API for WebSocket supports custom encoder and decoder classes for endpoints.
With a custom encoder and parameter type, JSON application class types can also be
supported. A custom decoder can be used to return any custom class type. JSON-P code
would be placed in the custom encoder and decoder classes.

@ServerEndpoint (value="/ep", decoders=JsonPersonCodec.class,
encoders=JsonPersonCodec.class)

public class MyServerEndpoint {
@OnMessage public Person onMessage (Person p) {

return new Person();

}

public class JsonPersonCodec implements Encoder.Text<Person>,
Decoder.Text<Person> {

/]

Java EE 7: Front-end Web Application Development 10 -7



JAX-RS Support for JSON-P

When using JAX-RS 2 on a platform that supports JSON-P, you
can leverage JSON-P to provide portable JSON support for your
RESTful web services.

* Resource methods can receive or return one of the JSON
object types:
— JsonStructure, JsonObject and JsonArray
» Resource methods can receive and return a
java.io.InputStream. Typically, you would receive an
InputStream and then use a JsonReader in the method
body to read from the InputStream.

« Resource methods can return a
javax.ws.rs.core.StreamingOutput. This could be
used with a JsonWriter or JsonGenerator.

Using JSON-P with JAX-RS is currently the only standards-based approach to produce and
consume JSON. Many JAX-RS implementations, such as Jersey, support JSON-POJO and
JSON-JAXB binding; however, support for these types of bindings is not yet standardized.
You might have to add lines of code to your Application subclass to enable the feature- or
place-specific classes on your CLASSPATH. If you are using JSON with JAX-RS and you are
not using JSON-P, then you must reference the documentation for your JAX-RS
implementation to understand the JSON features available to you.

Java EE 7: Front-end Web Application Development 10 -8



JAX-RS StreamingOQutput

The javax.ws.rs.core.StreamingOutput interface type
can be used as a return type for JAX-RS resource methods. It
enables you to stream the response body as it is created. You
can use StreamingOutput to stream large JSON responses.

//;troamianutput stream = new StreamingOutput ()
@0verride

public void write (OutputStream os) throws IOException,

WebApplicationException

//JsonGenerator jgen = Json.createGenerator (os);

} 2

return Response.ok(stream) .build(); ,/

Imagine sending responses that are hundreds of megabytes in size. If you had to load all that
data into memory before you could create a response, then each client request would
consume hundreds of megabytes of RAM.

Java EE 7: Front-end Web Application Development 10 -9



Where Can | Learn More?

Resource Website

JSON Processing

JSR 353: Java API for
JSON Processing

B

Java EE 7: Front-end Web Application Development 10 -10



Summary

In this lesson, you should have learned how to:

« Explain the benefits of WebSockets

« Create WebSocket server endpoints with Java

» Create WebSocket client endpoints with Java

» Create WebSocket client endpoints with JavaScript
« Consume JSON with Java

* Produce JSON with Java

Java EE 7: Front-end Web Application Development 10 - 11



Practice 10: Overview

This practice covers the following topics:
» Developing a WebSocket Endpoint and Client
» Using the JSON-P API to Generate JSON

Java EE 7: Front-end Web Application Development 10 -12






