
Third-party Java JSON libraries, such as Gson, have been around for years. However, JSON
APIs are now starting to become the official components of the Java platform by using the
JEP/JSR process. JSON-P was released as part of Java EE 7 and several other JSON
standards are under development:

• JSR 367: Java API for JSON Binding (JSON-B): This API will standardize JSON to
Java binding similar to what JAXB does for XML. It is currently scheduled for release as
a Java EE 8 component. For more, see https://jcp.org/en/jsr/detail?id=367.

• JEP 198: Light-Weight JSON API: This API provides a lightweight JSON library under
java.util and is under consideration for Java SE 9. For more, see
http://openjdk.java.net/jeps/198.

Java EE 7: Front-end Web Application Development 10 - 1

The streaming classes parse or generate JSON as the data streams through your application
eliminating the need to have all of the JSON data in memory as objects.
The object-based JSON reader or writer classes use JSON-P class types to represent JSON
constructs.

• JsonStructure – The common JSON object supertype
• JsonObject – A JSON object that uses string keys to uniquely identify values
• JsonArray – A JSON object that uses int index values to uniquely identify values

Java EE 7: Front-end Web Application Development 10 - 2

A JsonGenerator builds JSON text by using method chaining and writes it to an
OutputStream or a Writer.

Java EE 7: Front-end Web Application Development 10 - 3

A JsonParser converts JSON text into a sequence of events. It is a fast, low-level method
for parsing JSON without loading the JSON data into an object graph.

Java EE 7: Front-end Web Application Development 10 - 4

A JsonWriter builds an object graph of JSON-specific objects, and then writes that object
graph as JSON text to an OutputStream or a Writer.

Java EE 7: Front-end Web Application Development 10 - 5

A JsonReader converts JSON text into an object graph. The object types in the graph are
the same as those used by JsonReader.

Java EE 7: Front-end Web Application Development 10 - 6

The Java API for WebSocket supports custom encoder and decoder classes for endpoints.
With a custom encoder and parameter type, JSON application class types can also be
supported. A custom decoder can be used to return any custom class type. JSON-P code
would be placed in the custom encoder and decoder classes.
@ServerEndpoint(value="/ep", decoders=JsonPersonCodec.class,

encoders=JsonPersonCodec.class)

public class MyServerEndpoint {

@OnMessage public Person onMessage(Person p) {

return new Person();

}

}

public class JsonPersonCodec implements Encoder.Text<Person>,

Decoder.Text<Person> {

//...

}

Java EE 7: Front-end Web Application Development 10 - 7

Using JSON-P with JAX-RS is currently the only standards-based approach to produce and
consume JSON. Many JAX-RS implementations, such as Jersey, support JSON-POJO and
JSON-JAXB binding; however, support for these types of bindings is not yet standardized.
You might have to add lines of code to your Application subclass to enable the feature- or
place-specific classes on your CLASSPATH. If you are using JSON with JAX-RS and you are
not using JSON-P, then you must reference the documentation for your JAX-RS
implementation to understand the JSON features available to you.

Java EE 7: Front-end Web Application Development 10 - 8

Imagine sending responses that are hundreds of megabytes in size. If you had to load all that
data into memory before you could create a response, then each client request would
consume hundreds of megabytes of RAM.

Java EE 7: Front-end Web Application Development 10 - 9

Java EE 7: Front-end Web Application Development 10 - 10

Java EE 7: Front-end Web Application Development 10 - 11

Java EE 7: Front-end Web Application Development 10 - 12

