
Oracle SOA Suite 11g: Essential
Concepts 1 - 1

SOA	is	more	than	using	WSDLs,	and	is	more	than	just	an	application	with	a	
web	service	interface.	SOA	is	a	strategy—or	an	approach—that	is	business	
focused.	To	be	successful,	SOA	must	provide	true	business	value.	Without	that	
value,	services	tend	to	be	low-level	utility	services	(such	as	logging	and	
notification)	that	provide	no	real	return	on	investment.	Traditional	SOA	
principles	such	as	loose	coupling,	interoperability,	composability,	and	reuse	
are	key	traits	of	SOA,	but	only	because	they	contribute	to	the	business	value	
of	an	SOA.
Within	the	scope	of	the	architectural	strategy,	SOA	describes	an	approach	for	
enterprise	systems	development	and	integration	that	is	both	technology	
agnostic	(that	is,	it	operates	across	heterogeneous	systems)	and	aligned	with	
business	imperatives.	It	provides	loose	coupling	of	coarse-grained	
components	(services)	for	rapid	and	effective	reuse	of	enterprise	IT	assets.
The	ultimate	goal	of	SOA	is	to	facilitate	the	creation	of	new	business	solutions	
through	the	composition	of	services—without	the	need	for	complex	
programmatic	code	development	that	might	otherwise	duplicate	existing	
capabilities.	This	leads	to	a	more	agile	and	efficient	enterprise	that	can	
respond	more	rapidly	to	changing	market	and	regulatory	demands.

SOA Adoption and Architecture
Fundamentals 1 - 2

Because	every	enterprise	is	different,	there	is	no	single	model	of	good	SOA	
governance.	Oracle	has	a	governance	framework	that	has	two	aspects:

•The	actual	baseline	model
•A	continuous	feedback	loop

It	is	important	to	understand	that	governance	is	not	a	one-off	project.	It	is	
something	that	you	start,	and	it	continues	forever.	The	SOA	Governance	
Continuous	Improvement	Method	is	a	definition-improvement	feedback	
process	to	define	a	focused	and	customized	SOA	Governance	model.

SOA Adoption and Architecture
Fundamentals 1 - 3

Good	communication	and	access	to	information	are	often	among	the	missing	pieces	
of	an	SOA	initiative.	When	you	execute	SOA,	it	is	important	to	have	a	360-degree	
view	of	the	whole	software	development	life	cycle	(SDLC)	of	the	program-level	
activities.	Rather	than	just	building	one	big	application,	an	SOA	initiative	involves	
building	multiple	applications	and	potentially	hundreds	of	services.	Each	service	is	
made	up	of	a	contract,	an	interface,	and	a	payload.	As	work	is	handed	from	one	
department	to	another	and	from	one	person	to	another,	a	missing	part	can	become	a	
key	issue.
The	execution	phase	covers	the	different	life	cycles	of	delivering	solutions	and	
services	and	the	associated	service	infrastructure.	An	enterprise	repository	provides	a	
single	source	of	truth	for	the	SOA	portfolio	and	manages	SOA	assets,	projects,	and	
associated	metadata.	With	a	repository,	you	can	make	rapid	informed	decisions	about	
dependency	tracking,	impact	analysis,	usage	tracking,	and	compliance.
Within	the	life	cycle,	analysts	capture	requirements	and	perform	process,	functional,	
and	data	modeling.	Architects	then	identify	and	discovery	the	appropriate	services	
and	define	the	associated	service	contracts.	Service	engineers	can	design,	test,	and	
deliver	the	services.	IT	Operations	then	provides	facilities	to	provision,	monitor,	and	
manage	services.	The	life	cycle	is	then	complete.	Business	and	IT	users	can	utilize	
tools	to	visualize	historical	and	trend	analysis.	That	information	gets	fed	into	planning	

SOA Adoption and Architecture
Fundamentals 1 - 4

for	version	2.0	of	a	service.	Version	2.0	of	an	application	if	usually	released	
after	12–18	months.	But	a	service	might	be	versioned	quite	frequently.	

4

Creating	a	SOA	service	from	existing	assets	generally	requires	much	more	than	
just	adding	a	standards-based	interface.	Simply	service-enabling	existing	
assets	is	insufficient.	The	SOA	service	needs	to	expose	processes,	
functionality,	and	data	that	are	usable	in	a	broader	context	than	the	source	of	
the	capability	was	designed	to	meet.	Therefore,	creating	a	SOA	service	usually	
entails	some	amount	of	aggregation,	transformation,	or	expansion	of	existing	
capabilities	provided	by	the	source	systems.	This	requires	a	SOA	services	layer	
between	the	existing	assets	and	the	consumers	(as	illustrated	in	the	slide).
The	essence	of	service-oriented	integration	is	the	building	of	a	catalog	of	SOA	
services	that	expose―in	a	business-enabling	way―the	data,	functionality,	and	
processes	contained	in	existing	systems.	To	achieve	the	benefits	of	service-
oriented	integration,	the	SOA	services	must	decouple	the	consumers	from	the	
source	systems	without	creating	tight	coupling	between	the	consumer	and	
the	SOA	service	itself.	Additionally,	the	SOA	services	must	expose	functionality	
that	is	aligned	with	the	business	needs	of	the	service	consumers,	rather	than	
merely	providing	an	API	or	data-level	pass	through	to	the	source	systems.

SOA Adoption and Architecture
Fundamentals 8 - 5

The	existing	source	systems	frequently	include	a	business	process	or	workflow	
built	into	the	system.	From	the	perspective	of	the	source	system,	this	is	a	
complete	business	process.	However,	from	the	broader	context	of	the	
organization,	the	built-in	business	process	is	actually	only	a	portion	of	a	larger	
business	process	that	spans	multiple	back-end	systems.	Therefore,	when	you	
create	the	catalog	of	SOA	services,	these	built-in	business	processes	should	be	
viewed	as	subprocesses	that	are	part	of	the	larger	enterprise	business	
process.	This	relationship	is	illustrated	in	the	slide.

SOA Adoption and Architecture
Fundamentals 8 - 6

The	functional	capabilities	contained	in	existing	source	systems	are	usually	too	
fine	grained	and	domain	specific	to	be	useful,	as	is,	for	creating	composite	
applications.	The	application	hosting	the	functionality	was	usually	constructed	
to	provide	users	fine-grained	control.	Additionally,	the	application	invariably	
contains	far	more	functionality	than	is	necessary	in	a	broader	context.	Most	of	
the	functionality	is	specific	to	the	domain	(for	example,	HR,	Finance,	Shipping)	
and	has	little	relevance	in	an	"enterprise"	context.
Therefore,	exposing	existing	functionality	as	SOA	services	usually	requires	
abstracting	the	functionality	to	a	higher	level	so	that	it	has	meaning	(and	is	
more	useful)	in	a	broader	context.	Frequently	this	means	combining	several	
fine-grained	operations	into	a	more	coarse-grained	operation.
Sometimes	the	fine-grained	operations	are	associated	with	a	built-in	workflow	
exposed	through	the	user	interface	(a	set	of	prescribed	operations	that	the	
end	user	performs	in	sequence).	In	this	instance,	when	you	create	a	SOA	
service,	it	is	usually	desirable	to	have	a	single	operation	on	the	SOA	service	
that	encapsulates	and	hides	the	built-in	workflow	by	performing	the	individual	
steps	automatically.	The	orchestration	may	even	span	two	or	more	existing	
applications.	This	orchestration	of	fine-grained	operations	to	create	a	coarser-
grained	operation	is	a	common	technique	to	abstract	functionality.	This	type	

SOA Adoption and Architecture
Fundamentals 8 - 7

of	orchestration	is	illustrated	in	the	slide.	

7

Each	existing	application	contains	its	own	data	model	and	data	formats.	This	
proliferation	of	data	models	and	data	formats	is	made	worse	by	the	fact	that	a	
single	enterprise	entity	(for	example,	a	customer,	product,	or	order)	
frequently	has	data	elements	stored	in	multiple	existing	applications.	To	be	
successful	at	exposing	existing	data	via	SOA	services,	the	integration	approach	
must	manage	this	complexity.
Providing	consumer	representations	and	reading	from	and	writing	to	multiple	
source	systems	lead	to	the	issue	of	data	format	transformations.	For	a	very	
small	number	of	source	systems,	point-to-point	transformations	can	be	used	
by	the	SOA	services.
However,	this	approach	becomes	unworkable	as	the	number	of	source	
systems	increases.	
A	better	approach	is	to	create	a	normalized	format	for	the	data	entities	and	
then	provide	transformations	to	and	from	the	normalized	format	for	each	
source	system.	A	single	canonical	data	model	for	the	entire	enterprise	is	not	
required	to	successfully	employ	normalized	data	formats.	Rather,	a	federated	
approach	to	normalization	can	be	used.	For	example,	in	a	large	enterprise,	
each	functional	domain	could	create	a	normalized	format.	Transformations	
between	the	domain	formats	would	then	be	created	for	SOA	services	that	

SOA Adoption and Architecture
Fundamentals 8 - 8

span	domains.	This	approach	is	illustrated	in	the	slide.

8

The	primary	goal	of	a	SOA	service	that	exposes	an	enterprise	data	entity	is	to	
make	it	easier	to	work	with	the	entity	and	hide	the	complexity	of	how	that	
entity	is	stored	in	existing	source	systems.	To	achieve	this	goal,	the	SOA	
service	needs	to	incorporate	the	following	capabilities:

Consumer	representation:	The	SOA	service	should	present	an	
interface	to	the	entity	that	is	appropriate	for	the	consumer	of	the	data.	
A	single	SOA	service	might	provide	multiple	representations	of	a	singe	
entity,	with	each	representation	appropriate	for	a	different	type	of	
consumer.
Aggregation: The	SOA	service	may	need	to	pull	data	elements	from	
multiple	source	systems	to	construct	a	representation	for	a	particular	
consumer.
Synchronization: An	update	to	an	entity	may	require	updating	data	
elements	in	more	than	one	source	system.	The	SOA	service	needs	to	
ensure	that	all	updates	are	done	properly	so	that	the	entity	maintains	
consistency.

SOA Adoption and Architecture
Fundamentals 8 - 9

Service	Contract
SOA	services	include	a	contract	that	specifies	the	functional	and	
nonfunctional	capabilities	provided.	To	support	business-level	composition,	
the	SOA	service	must	have	a	contract	that	is	understandable	to	a	business	
person.	A	service	engineering	process	that	enforces	creation	of	the	service	
contract	must	be	established.	The	architecture	must	support	discovery	of	
existing	SOA	services	based	on	the	service	contracts.	Some	of	the	capabilities	
provided	by	the	SOA	service	and	documented	in	the	service	contract	may	be	
fulfilled	by	configuration	of	infrastructure.
Opaque	Service	Implementations
The	implementation	of	a	SOA	service	is	opaque	to	all	service	consumers.	
Service	consumers	must	be	able	to	successfully	call	a	SOA	service	without	
needing	to	understand	the	internal	workings	of	SOA	services.	The	service	
interface	must	be	constructed	so	that	implementation	details	do	not	
propagate	through	the	interface.	The	architecture	must	support	opaque	
service	implementations.	

SOA Adoption and Architecture
Fundamentals 8 - 10

Platform	Independence
The	service	consumer	platform	is	independent	of	the	service	provider	platform.	SOA	
services	need	to	support	any	kind	of	service	consumer	regardless	of	the	particular	
platform	on	which	the	consumer	is	built.	SOA	services	must	be	constructed	so	that	
platform	dependencies	are	not	introduced.	The	architecture	must	support	service	
consumers	hosted	on	platforms	that	are	different	from	the	service	providers.	
Location	Transparency
The	location	of	a	service	provider	is	unimportant	to	the	service	consumer	(and	vice	
versa).	Location	transparency	helps	provide	the	decoupling	of	service	consumers	and	
providers	that	is	necessary	for	extensive	SOA	service	reuse.	Service	providers	should	
make	no	assumption	about	the	location	of	the	service	consumer.	The	architecture	
must	support	the	ability	for	a	service	consumer	to	call	a	service	provider,	regardless	
of	the	location	of	either.
Concurrent	Service	Versions
There	may	be	multiple	versions	of	a	SOA	service	concurrently	in	production.	A	SOA	
service	will	almost	always	require	modifications	to	support	new	consumers	or	to	
expand	functionality.	Supporting	concurrent	versions	of	a	SOA	service	is	essential	for	
a	sound	service-versioning	approach.	A	service-versioning	strategy	needs	to	be	
established.	The	architecture	must	support	multiple	concurrent	versions	of	a	SOA	
service.
Graceful	Service	Migration
Service	consumers	should	be	able	to	migrate	to	a	newer	version	of	a	SOA	service	
gracefully.	Service	consumers	should	migrate	to	a	new	version	of	a	SOA	service	as	
part	of	a	normal	maintenance	process.	The	coordinated	deployment	of	service	
consumers	and	service	providers	should	not	be	necessary.	A	service	migration	
strategy	needs	to	be	established.	The	architecture	must	support	graceful	service	
migration.
Summary
The	preceding	principles	provide	sound	guidance	for	creating	a	service-oriented	
architecture	for	integration.	Each	organization	embracing	service-oriented	integration	
should	evaluate	the	principles	listed	in	the	slide	and	derive	their	own	set	of	principles	
to	match	the	specific	environment	and	goals	of	their	organization.

SOA Adoption and Architecture
Fundamentals 8 - 11

The	data	movement	layer	provides	batch	and	bulk	data	handling	for	the	
architecture.	This	layer	exists	primarily	to	offload	bulk	data	movement	from	
the	upper	layers	in	the	architecture.	Bulk	data	movement	is	inevitable	in	many	
enterprises;	therefore,	the	architecture	must	provide	a	mechanism	to	provide	
this	capability	in	an	efficient,	controlled	manner.	Without	this	layer,	the	other	
layers	in	the	architecture	might	be	misused	to	move	large	blocks	of	data―a	
task	for	which	the	other	layers	are	not	well	suited.
The	key	capabilities	encapsulated	by	this	layer	include:

Extract,	transform,	load: The	ETL/ELT	capability	provides	bulk	data	
movement	from	one	persistent	store	to	another.
Data	cleansing: Data	cleansing	ensures	the	quality	of	the	data	that	is	
being	moved	in	bulk.	Data	cleansing	can	also	be	applied	to	ensure	
quality	and	consistency	on	individual	data	updates.
Primary-key	cross-reference: Each	persistent	data	store	is	likely	to	
have	its	own	unique	primary	key	scheme.	This	layer	provides	the	cross-
reference	between	these	primary	key	schemes	so	that	an	identity	can	
be	maintained	across	disparate	data	stores.

SOA Adoption and Architecture
Fundamentals 8 - 12

The	data	movement	layer	is	shown	below	the	enterprise	information	systems	
because	bulk	data	movement	is	done	"behind	the	scenes"	and	this	processing	is	
primarily	invisible	to	the	upper	layers	of	the	architecture.	However,	the	results	
achieved	by	the	data	movement	layer	are	clearly	valuable	to	the	upper	layers,	and	
both	the	quality	data	and	the	primary-key	cross-reference	are	leveraged	by	the	upper	
layers	in	the	architecture	wherever	appropriate.
In	some	IT	departments,	bulk	data	movement	is	used	to	create	online	aggregate	data	
views	by	pulling	data	from	multiple	systems	together	into	a	single	data	store.	
Although	this	architecture	does	not	prohibit	such	an	approach,	the	preferred	
approach	is	to	create	enterprise	data	entities	in	the	data	normalization	layer	that	
aggregate	data	across	source	systems	without	the	need	to	persistently	store	copies	of	
data.
An	enterprise	information	system	(EIS)	is	any	system	that	provides	data	or	
functionality	that	is	exposed	by	the	integration	architecture.	Examples	of	EISs	include	
packaged	applications,	legacy	systems,	databases,	partner	systems,	and	so	on.	An	EIS	
may	also	be	a	service	consumer.	As	SOA	becomes	more	prevalent,	it	will	become	
more	common	for	EISs	to	participate	natively	in	service-oriented	integration.	This	is	
not	formally	a	layer	in	the	integration	architecture.	Rather,	the	entire	purpose	of	the	
architecture	is	to	expose	the	data	and	functionality	that	is	contained	in	the	various	
enterprise	information	systems	to	provide	business	value	beyond	what	is	already	
provided	by	the	systems	themselves.

SOA Adoption and Architecture
Fundamentals 8 - 13

The	connectivity	layer	provides	access	to	the	enterprise	information	systems.	
There	are	a	variety	of	technologies	and	products	that	can	be	leveraged	to	
connect	to	existing	EISs.	Generally,	both	synchronous	and	asynchronous	
techniques	are	employed	by	this	layer	to	provide	connectivity.	Both	
proprietary	and	standards-based	technologies	and	products	are	used.
The	key	capabilities	provided	by	this	layer	include:

Messaging:Messaging	provides	asynchronous	connectivity	to	EISs.	
Many	traditional	integration	products	(for	example,	MQSeries	and	
TIBCO)	are	based	on	messaging	systems.	Enterprises	have	successfully	
used	these	products	to	connect	to	EISs,	and	this	existing	connectivity	
can	be	leveraged	by	this	architecture.
Adapters:	Adapters	(for	example,	JCA)	provide	a	standardized	
approach	for	connecting	to	EISs.
Standard	APIs:	The	EIS	may	provide	access	via	one	or	more	standard	
application	programming	interface	(for	example,	JDBC,	RMI,	and	WS*).	
The	connectivity	layer	includes	these	standard	interfaces	natively,	
thereby	allowing	easy	access	to	any	EIS	that	exposes	a	standard	API.

SOA Adoption and Architecture
Fundamentals 8 - 14

Custom	APIs: Some	EISs	(especially	legacy)	provide	access	only	via	a	custom	
application	programming	interface.	The	connectivity	layer	provides	the	
capability	to	call	these	custom	APIs	and	wrap	them	with	a	standardized	
interface.
Events: Events	allow	the	EISs	to	initiate	actions.	The	connectivity	layer	
provides	the	mechanism	so	that	an	EIS	can	raise	an	event	that	is	handled	by	
the	mediation	layer	(just	like	any	other	message).	The	primary	purpose	of	this	
layer	in	the	architecture	is	to	encapsulate	and	hide	the	complexity	of	
connecting	to	back-end	systems.	This	allows	the	upper	layers	in	the	
architecture	to	treat	the	EISs	in	a	more	uniform	and	generic	fashion,	thus	
providing	greater	reusability	and	portability	across	back-end	systems.

The	data	normalization	layer	provides	a	standardized	format	for	data	entities.	Each	
EIS	stores	data	in	its	own	(usually	proprietary)	format.	This	layer	transforms	the	data	
into	a	form	that	is	readily	consumable	by	the	upper	layers	in	the	architecture.	The	key	
capabilities	provided	by	this	layer	include:

Logical	data	model: The	logical	data	model	provides	an	"enterprise"	view	of	
data	entities.	The	logical	data	model	for	an	enterprise	frequently	incorporates	
industry-standard	data	formats	(for	example,	HR-XML,	HL7,	and	IATA).
Data	aggregation: To	construct	a	complete	view	of	an	enterprise	data	entity,	it	
is	frequently	necessary	to	aggregate	data	from	several	sources.	This	layer	
includes	this	ability	to	aggregate	data	from	multiple	sources	to	provide	a	
complete	enterprise	data	entity.
Data	synchronization: Data	synchronization	ensures	that	all	data	entities	
remain	consistent	regardless	of	where	an	update	or	change	is	made.	Changes	
are	propagated	to	all	copies	and	views	in	an	orderly	manner.
Data	caching: Data	caching	allows	the	computational	expense	of	aggregation	
and	transformation	to	be	shared	across	more	than	one	service	request.	The	
primary	purpose	of	this	layer	in	the	architecture	is	to	encapsulate	and	hide	
the	complexity	of	the	data	models	and	formats	used	by	the	back-end	systems.	
This	allows	the	upper	layers	in	the	architecture	to	operate	on	data	entities	
that	match	the	needs	of	the	business	rather	than	operating	on	data	that	
match	the	storage	approach	of	the	back-end	systems.	The	data	normalization	
provided	by	this	layer	should	not	be	confused	with	database	normalization.

The	business	service	layer	exposes	data	and	functionality	that	is	understandable	and	
has	meaning	in	a	business	context.	This	layer	uses	the	lower	layers	to	create	SOA	
services	that	a	business	person	would	understand.	The	key	capabilities	provided	by	
this	layer	include:

Enrichment: Enrichment	is	the	process	of	adding	data	elements	to	a	data	
entity	to	give	the	entity	increased	information	(and	hence	value)	in	a	business	
context.
Orchestration: Orchestration	is	used	to	combine	multiple	lower-level	
operations	into	a	business	service	that	hides	the	complexity	of	the	lower-level	
operations.	
Custom	business	logic: Custom	business	logic	is	hosted	in	this	layer	of	the	
architecture.	Custom	business	logic	frequently	leverages	lower-level	layers	to	
provide	some	of	the	exposed	data	and	functionality.
Business	rules: Business	rules	describe	the	operations,	definitions,	and	

SOA Adoption and Architecture
Fundamentals 8 - 15

constraints	that	apply	to	an	organization.	Essentially	they	are	if-then	
statements	that	define	or	constrain	some	aspect	of	the	business.	
Although	business	rules	are	frequently	captured	in	custom	code,	it	is	
far	better	to	extract	these	business	rules	into	explicit	rule	sets	so	that	
they	can	be	more	easily	understood,	modified,	and	maintained.

The	primary	purpose	of	this	layer	in	the	architecture	is	to	provide	an	interface	
that	matches	the	business.	This	layer	also	provides	the	layer	of	innovation	
over	the	existing	back-end	systems.	Custom	business	logic	and	rules	can	be	
implemented	that	use	existing	systems	yet	provide	capabilities	that	extend	
beyond	the	capabilities	provided	by	the	back-end	systems.

15

The	business	process	layer	automates	business	processes.	This	layer	uses	the	
lower	layers,	especially	the	business	service	layer,	to	create	and	automate	
business	processes.	The	business	processes	generally	span	multiple	enterprise	
information	systems.
The	key	capabilities	in	this	layer	include:

Human-centric	workflow:	Human-centric	workflow	is	a	business	
process	that	is	primarily	or	entirely	composed	of	human	tasks.	There	
may	be	some	relatively	small	amount	of	system	interaction	to	support	
the	human	tasks.
System-centric	workflow:	System-centric	workflow	is	a	business	
process	that	is	primarily	composed	of	system-to-system	activities.	
There	may	be	some	human	tasks	in	the	business	process,	or	humans	
may	be	required	to	handle	the	exception	cases	in	an	otherwise	entirely	
system-to-system	process.
Choreography:	Choreography	defines	the	messages	that	flow	back	and	
forth	between	systems	that	are	participating	in	business	processes.	An	
example	of	choreography	would	be	a	Rosetta	Net	Partner	Interface	
Process	(PIP).
Business	activity	monitoring:	Business	activity	monitoring	(BAM)	

SOA Adoption and Architecture
Fundamentals 8 - 16

provides	visibility	into	business	processes.	The	BAM	information	is	
exposed	in	dashboards	that	are	used	to	measure	and	improve	business	
processes..

16

Decision	rules:Most	business	processes	include	decision	points	where	
branching	is	done	based	on	certain	criteria.	Decision	rules	are	the	
encapsulation	of	these	decision	criteria	into	a	rule	that	is	then	more	easily	
modified	and	maintained.

The	primary	purpose	of	this	layer	in	the	architecture	is	to	define	and	automate	the	
business	processes	in	a	way	that	is	external	to―and	independent	of―the	specific	
back-end	systems	used	in	the	organization.	This	isolates	the	business	process	from	
back-end	system	changes	and,	conversely,	isolates	the	back-end	systems	from	
business	process	changes.	Decoupling	the	business	processes	from	the	back-end	
systems	simplifies	changes	and	maintenance	for	business	processes	and	back-end	
systems.	This	layer	generally	provides	the	greatest	and	most	measurable	business	
value.
The	mediation	layer	provides	loose	coupling	for	the	entire	architecture.	It	decouples	
the	layers	of	the	architecture	and	also	decouple	external	users	of	the	layers	from	the	
specific	layers	in	the	architecture.	The	key	capabilities	in	this	layer	include:

Routing: Routing	provides	the	ability	to	send	the	client	request	to	the	
appropriate	provider	based	on	certain	criteria.	The	routing	may	even	include	
sending	the	client	request	to	multiple	providers.	This	capability	facilitates	
location	transparency,	versioning,	scalability,	partitioning,	request	pipelining,	
SLA	management,	and	so	on.
Protocol	mediation: Protocol	mediation	is	the	ability	to	handle	a	client	
request	that	uses	one	protocol	(for	example,	WS*,	JMS,	or	REST)	with	a	
provider	that	uses	a	different	protocol.	This	provides	protocol	decoupling	
between	the	provider	and	the	consumer.

Message	transformation:	Message	transformation	allows	a	client	request	that	uses	
one	message	format	to	be	handled	by	a	provider	that	expects	a	different	message	
format.	This	provides	message	format	decoupling	between	the	provider	and	the	
consumer.

Discovery: Discovery	is	the	mechanism	by	which	a	client	finds	a	provider	of	a	
particular	SOA	service.	Discovery	can	occur	at	design	time	or	runtime.	
Monitoring:Monitoring	captures	runtime	information	about	the	messages	
flowing	through	the	mediation	layer.	Because	the	mediation	layer	is	an	
intermediary	for	message	traffic,	it	provides	a	centralized	monitoring	
capability.
Policy	enforcement: Policy	enforcement	provides	consistent	application	of	
policies	(for	example,	WS-SecurityPolicy)	across	all	messages	flowing	through	
the	mediation	layer.	Because	the	mediation	layer	is	an	intermediary	for	
message	traffic,	it	provides	a	centralized	policy	enforcement	capability.

The	primary	purpose	of	this	layer	in	the	architecture	is	to	facilitate	communication	
between	layers	in	the	architecture	and	between	this	architecture	and	the	systems	
that	connect	to	it.	This	layer	is	“infrastructure”	in	the	truest	sense	and	therefore	
rarely	maps	directly	to	business	requirements.	However,	this	layer	provides	key	
capabilities	that	make	the	architecture	service	oriented	and	is	the	primary	focus	for	

SOA Adoption and Architecture
Fundamentals 8 - 17

meeting	nonfunctional	requirements	such	as	scalability,	reliability,	availability,	
and	maintainability.
A	User	Interaction	System	is	any	system	that	accesses	any	layer	in	the	
integration	architecture.	There	are	a	wide	variety	of	systems	that	can	access	
the	integration	layers.	Examples	include	web-based	applications,	fat-client	
applications,	and	partner	applications.	This	is	not	formally	a	layer	in	the	
integration	architecture.	Rather,	these	are	the	systems	that	gain	value	from	
the	data	and	functionality	exposed	by	the	layers	of	the	architecture

17

A	SOA	service	can	be	exposed	at	any	layer	in	the	logical	architecture.	A	SOA	
service	implementation	can	also	span	layers	in	the	integration.
When	constructing	a	SOA	service	that	spans	layers,	developers	should	
understand	and	apply	the	layers	so	that	the	implementation	uses	the	same	
separation	of	concerns.	This	not	only	makes	the	SOA	service	easier	to	
maintain,	it	also	makes	it	possible	to	easily	refactor	the	SOA	service	to	expose	
lower-level	functionality	as	a	separate	and	distinct	service.	
SOA	services	can	be	classified	by	the	uppermost	layer	that	is	included	in	the	
service	functionality.	The	diagram	in	the	slide	illustrates	several	types	of	SOA	
services	and	also	illustrates	how	upper	layers	call	services	from	lower	layers.	
Dotted	lines	indicate	communication	paths	through	the	mediation	layer,	
whereas	solid	lines	indicate	direct	communication	that	is	not	mediated.	
Communication	that	is	internal	to	a	SOA	service	implementation	does	not	use	
the	mediation	layer.	All	communication	that	uses	the	interface	to	a	SOA	
service	should	pass	through	the	mediation	layer.
The	diagram	shows	the	business	process	directly	accessing	a	connectivity	
service.	While	the	architecture	allows	this	direct	interaction,	in	general	this	
should	be	avoided	since	it	tends	to	make	the	business	process	directly	
dependent	on	the	actual	back-end	system	being	called.	A	better	approach	is	

SOA Adoption and Architecture
Fundamentals 8 - 18

to	keep	the	business	process	isolated	from	the	back-end	systems	by	having	
the	business	process	call	only	business	services	or	data	services.

18

Service	composition	is	the	ability	to	leverage	lower-level	services	to	create	a	higher-
level	service.	The	orchestration	shown	in	the	slide	is	an	example	of	service	
composition	because	the	business	service	leverages	the	connectivity	service	to	
supply	some	of	the	necessary	capability.	This	architecture	supports	and	encourages	
service	composition	as	a	primary	approach	for	developers	to	apply.
When	doing	composition,	developers	should	respect	the	layering	of	the	architecture.	
A	business	service	could	leverage	existing	connectivity	services	or	data	services,	and	a	
data	service	could	leverage	existing	connectivity	services.	But	a	data	service	should	
not	call	a	business	service,	and	a	connectivity	service	should	not	call	a	data	service	or	
a	business	service.	Composition	by	calling	services	within	the	same	layer	of	the	
architecture	(for	example,	a	business	service	calling	another	business	service)	is	
supported,	but	care	must	be	taken	when	using	composition	within	a	layer	because	
this	can	lead	to	complex	dependencies	that	present	problems	for	maintenance	and	
versioning.
Depending	on	the	products	and	technology	used	to	implement	the	mediation	layer,	it	
may	also	be	possible	to	construct	service	compositions	in	the	mediation	layer.	This	is	
commonly	referred	to	as	a	service	pipeline.	In	a	service	pipeline,	the	mediation	layer	
handles	a	service	request	by	routing	the	request	to	one	or	more	services	potentially	
doing	message	transformations	and	protocol	translations	as	well.	Although	it	is	
powerful,	this	capability	should	be	used	judiciously	since	the	mediation	layer	is	not	a	
general-purpose	programming	environment	and	is	usually	a	shared	resource.	
Excessive	computing	or	configuration	errors	within	the	mediation	layer	could	SOA Adoption and Architecture

Fundamentals 8 - 19

negatively	affect	all	service	traffic	passing	through	the	mediation	layer.

19

The	table	in	the	slide	illustrates	the	differences	between	a	business	process	
and	an	orchestration.	Business	processes	should	not	contain	lower-level	
technical	details.	The	technical	details	should	be	encapsulated	by	business	
services	that	expose	an	interface	that	is	meaningful	to	a	business	user.
For	example,	the	business	process	may	have	a	step	that	requires	updating	a	
customer	address.	However,	the	customer	address	may	be	stored	in	several	
back-end	systems.	This	complexity	is	not	of	interest	to	a	business	user,	nor	is	it	
a	core	part	of	the	business	process.	Therefore,	this	technical	complexity	
should	be	encapsulated	by	a	shared	business	service	that	exposes	an	“update	
customer	address”	operation.	The	operation	then	updates	all	necessary	
systems.	Notice	that	this	encapsulation	also	makes	it	possible	to	change	the	
back-end	systems	or	even	remove	back-end	systems	without	affecting	
business	processes	that	update	customer	addresses.	Only	the	shared	business	
service	needs	to	be	modified.	Conversely,	the	orchestration	that	is	included	in	
the	business	services	should	not	include	steps	that	are	likely	to	change	due	to	
changes	in	business	strategy	or	execution.	Those	steps	belong	in	the	business	
process	layer	so	that	they	can	be	easily	changed	whenever	the	business	
changes.

SOA Adoption and Architecture
Fundamentals 8 - 20

This	service-oriented	integration	architecture	does	not	require	the	use	of	
specific	tools	or	technologies.	It	is	based	on	principles	that	were	presented	
earlier,	and	it	can	be	realized	using	a	wide	variety	of	tools	and	technologies.	
Nonetheless,	there	are	types	of	tools	and	technologies	that	are	well	suited	to	
service-oriented	integration,	fit	nicely	with	the	architecture,	and	therefore	are	
likely	to	be	used	by	developers	applying	this	architecture.	These	tools	and	
technologies	are	shown	in	the	slide	and	described	for	each	layer	in	the	
architecture.
Mediation	Layer
The	primary	tools	and	technologies	for	this	layer	are	Enterprise	Service	Bus	
(ESB),	Registry,	Repository,	and	Web	Service	Management	(WSM).	There	are	
also	many	existing	and	emerging	protocol	standards,	including	WS*,	REST,JMS,	
XML,	and	XSLT.
Business	Process	Layer
The	primary	tools	and	technologies	for	this	layer	are	for	capturing,	analyzing,	
executing,	and	monitoring	business	processes.	These	include	business	process	
analysis	(BPA),	business	process	management	(BPM),	and	business	activity	
monitoring	(BAM).	Rules	engines	can	also	be	used	to	capture	and	execute	
decision	rules	for	business	processes.	There	are	several	associated	standards,	

SOA Adoption and Architecture
Fundamentals 8 - 21

including	BPMN,	BPEL,	and	UML	Activity	Diagrams.

21

Business	Service	Layer
The	primary	tools	and	technologies	for	this	layer	include	traditional	software	
development	tools	(for	example,	IDE).	Additionally,	the	orchestration	capability	requires	
a	developer-focused	process	definition	tool.	Rules	engines	can	also	be	used	to	capture	
and	execute	business	rules.	Associated	standards	include	UML,	J2EE,	BPEL,	SCA,	WSCDL,	
and	so	on.
Data	Normalization	Layer
The	primary	tools	and	technologies	for	this	layer	are	for	modeling	data	and	for	defining	
and	manipulating	data	formats.	Thus,	the	primary	tools	are	visualization	and	authoring	
tools	for	ERDs,	O/R	mapping,	XML,	XSD,	XQuery,	XSLT,	and	so	on.	Industry-standard	data	
formats	are	also	important	for	this	layer.	Because	this	layer	also	performs	data	
aggregation	and	data	synchronization,	orchestration	tools	(for	example,	BPEL)	are	also	
essential	for	this	layer.
Connectivity	Layer
The	primary	tools	and	technologies	for	this	layer	are	adapter	development	kits	and	
messaging	technologies.	Also,	there	are	many	possible	technologies	that	may	be	
needed	to	connect	to	the	wide	variety	of	systems	that	may	be	included	as	source	
systems.	Associated	standards	include	JDBC,	ODBC,	and	JCA.
Data	Movement	Layer
The	primary	tools	and	technologies	for	this	layer	are	ETL	tools	and	data	cleansing	tools.	
Persistent	storage	tools	and	technologies	for	both	OLTP	and	OLAP	are	vitally	important	
for	this	layer.

SOA Adoption and Architecture
Fundamentals 8 - 22

Mediation	is	a	key	component	in	the	overall	architecture,	providing	the	
decoupling	between	consumers	and	providers.	The	diagram	in	the	slide	
illustrates	the	typical	flow	of	a	message	through	the	mediation	layer.

1. Before	calling	a	SOA	service,	the	service	consumer	must	
first	find	the	appropriate	SOA	services.	This	is	called	service	discovery	
and	may	be	performed	at	development	time	or	at	runtime.	The	
architecture	supports	both.	There	is	also	an	authorization	check	done	
to	see	which	SOA	services	the	consumer	is	allowed	to	see.
2. The	service	request	is	made	to	a	service	proxy	rather	
than	directly	to	the	service	provider.	The	service	proxy	allows	the	
mediation	layer	to	apply	all	the	capabilities	that	have	been	configured	
for	that	service	request.
3. An	authorization	check	is	performed	on	the	service	
request.	Although	it	is	not	always	required,	leveraging	the	
authorization	capability	within	the	mediation	layer	provides	a	
centralized	approach	to	securing	SOA	services.	An	authorization	check	
may	also	be	performed	before	forwarding	the	response	message	to	
ensure	that	the	consumer	is	allowed	to	see	the	contents	within	the	
response	message.
4. After	the	service	request	has	been	authorized,	the	

SOA Adoption and Architecture
Fundamentals 8 - 23

request	is	routed	to	the	appropriate	service	provider.	The	request	
message	may	be	transformed	before	being	sent	to	the	provider;	the	
protocol	may	be	translated	as	well.
5. All	of	the	activities	within	the	mediation	layer	are	
monitored.	This	provides	a	centralized	monitoring	capability	across	all	
SOA	services.

23

The	service-oriented	integration	architecture	spans	multiple	systems	and	the	
computer	processes	within	those	systems.	The	diagram	in	the	slide	illustrates	
the	message	flow	and	the	process	boundaries	that	are	crossed	by	the	
messages.
A	single	business	process	may	result	in	messages	that	span	many	computer	
processes.	In	general,	every	service	invocation	results	in	a	process	boundary	
being	crossed.	In	fact,	since	each	service	invocation	also	passes	through	the	
mediation	layer,	each	service	invocation	crosses	two	process	boundaries:	
mediation	and	service	provider.	Additionally,	the	service	implementation	may	
also	cross	service	boundaries.	For	example,	the	business	service	shown	in	the	
slide	makes	API	calls	to	packaged	applications	(via	adapters),	and	each	
packaged	application	runs	in	its	own	process.
Although	seven	different	processes	are	shown,	the	diagram	actually	simplifies	
the	number	of	processes	included	in	the	integration.	Both	of	the	connectivity	
services	(A	and	B)	would	likely	include	out-of-process	calls	to	the	source	
system	for	which	they	are	providing	connectivity.
Each	time	a	process	boundary	is	crossed,	there	are	performance	impacts	from	
the	network	and	message	marshalling	and	de-marshalling.	This	is	a	primary	
reason	that	SOA	services	should	expose	relatively	coarse-grained	interfaces.	

SOA Adoption and Architecture
Fundamentals 8 - 24

This	is	also	a	reason	that	a	service	implementation	might	span	multiple	layers	
in	the	architecture.	This	also	explains	why	the	architecture	includes	a	separate	
data	movement	layer,	because	moving	large	quantities	of	data	across	service	
boundaries	is	computationally	very	expensive.

24

There	are	many	ways	that	the	architecture	can	be	deployed	in	an	enterprise.	
Organizational	size,	structure,	and	span	of	management	control	play	a	
significant	role	in	determining	many	aspects	of	deployment,	especially	how	
much	is	shared	across	the	enterprise	and	how	much	is	specific	to	a	portfolio	
or	division.
In	a	mostly	shared	deployment,	only	the	lower	levels	of	the	architecture	are	
deployed	independently	across	portfolios	or	divisions.	This	type	of	
deployment	is	illustrated	in	the	slide.	This	type	of	deployment	has	most	of	the	
layers	deployed	so	that	they	are	shared	across	the	enterprise.	Only	the	lowest	
levels	of	the	architecture	are	specific	to	the	portfolios.	It	should	also	be	clear	
that	it	is	possible	for	a	smaller	enterprise	to	have	all	of	the	integration	layers	
shared	enterprise-wide.

SOA Adoption and Architecture
Fundamentals 8 - 25

As	the	enterprise	size	increases,	it	becomes	more	difficult	to	deploy	a	single	
shared	environment	for	integration.	It	becomes	more	likely	that	a	distributed	
or	hierarchical	deployment	will	be	a	better	fit	(as	illustrated	in	the	slide).
This	type	of	hierarchical	deployment	has	several	advantages,	including	the	
following:

Each	portfolio	can	define	its	own	business	processes,	SOA	services,	
and	data	formats	that	are	independent	from	other	portfolios.
This	deployment	supports	the	federated	data	normalization	approach	
(described	earlier).
Business	processes	or	SOA	services	that	span	portfolios	exist	at	the	
enterprise	level	and	can	leverage	the	portfolio	business	processes	and	
SOA	services.
The	mediation	layer	provides	location	transparency	between	the	
portfolio	and	enterprise	domains.
This	type	of	deployment	easily	supports	acquisitions	because	a	new	
acquisition	can	be	treated	as	simply	another	portfolio.

The	primary	disadvantage	of	a	hierarchical	deployment	is	the	increased	cost	
and	complexity	of	supporting	more	hardware	and	software.	Adherence	to	
standards	to	support	interoperability	is	also	more	important	in	a	hierarchical	

SOA Adoption and Architecture
Fundamentals 8 - 26

deployment	because	the	various	portfolios	may	select	different	products.

26

The	slide	shows	a	high-level	view	of	how	the	architecture	might	be	deployed	
to	hardware.	
The	diagram	shows	each	layer	deployed	to	separate	hardware.	Although	this	
deployment	is	possible,	it	may	also	be	desirable	to	deploy	layers	of	the	
architecture	to	the	same	hardware.	Showing	the	layers	deployed	to	separate	
hardware	makes	the	communication	paths	more	explicit.	This	also	shows	the	
layers	deployed	to	multiple	hardware	boxes	to	provide	scalability	and	
reliability.	In	a	modern	data	center	where	server	virtualization	is	widespread,	
the	layers	would	be	deployed	to	virtual	servers.
The	number	of	virtual	servers	hosting	each	layer	is	determined	by	the	load	on	
the	layer	and	can	be	dynamically	provisioned	as	necessary.	Many	of	the	
detailed	hardware	deployment	decisions	are	driven	by	the	specific	products	
and	technologies	used	to	realize	the	architecture.	

SOA Adoption and Architecture
Fundamentals 8 - 27

SOA Adoption and Architecture
Fundamentals 8 - 28

The	following	Oracle	Fusion	Middleware	products	are	included	in	the	product	
mapping:

Oracle	BPEL	Process	Manager	(BPEL-PM):	Provides	the	ability	to	
quickly	build	and	deploy	orchestrations	and	business	processes	in	a	
standards-based	manner
Oracle	Business	Activity	Monitoring	(OBAM):	A	complete	solution	for	
building	interactive,	real-time	dashboards	and	proactive	alerts	for	
monitoring	business	processes	and	services
Oracle	Business	Process	Management	(OBPM):	A	complete	set	of	
tools	enabling	collaboration	between	business	and	IT	to	create,	
automate,	execute,	and	optimize	business	processes
Oracle	Business	Rules	(OBR):	Evaluate	rules	rapidly	using	a	
lightweight,	high-performance	rules	engine
Oracle	Business-to-Business	Integration	(OB2BI):	Provides	a	single	
integrated	solution	for	rapidly	establishing	online	collaborations	and	
automated	processes	with	business	partners
Oracle	Data	Integrator	(ODI):	A	next-generation	extract,	load,	and	
transform	(ELT)	technology	that	offers	the	productivity	of	a	declarative	
design	approach,	as	well	as	the	benefits	of	a	platform	for	seamless	

SOA Adoption and Architecture
Fundamentals 8 - 29

batch	and	real-time	integration

29

