
Object-Oriented
Concepts

Upon completion of this lesson you will be able to
• Define encapsulation, polymorphism and

inheritance
• Define object, class, attribute, method, message
• Explain what it means to create an object-

oriented system

Object-Oriented Concepts

Computing in the late 60’s -70’s

What did computing look like: 1967 - 1972?
• Mainframes, command-line, text-based
• Punched Cards
• COBOL
• FORTRAN
• Assembler
• ALGOL, Pascal, C/Unix
• Little/no discipline or structure
• No OO

Smalltalk to the Rescue!

• First “real” OO language, invented by Alan Kay, Adele Goldberg and others at
Xerox Palo Alto Research Center (PARC) (early 1970’s)

• Reaction to command-line, text-based, centralized, monolithic mainframe
mentality of the time

• Designed to mimic Kay's biological model of individual entities, or "cells,"
communicating with each other via messages

• System was easily extendible, with a simple syntax, a self-contained
development environment, and objects, which more closely resembled the real
world things being simulated

Alan Kay: Object Oriented Programming
At Utah sometime after Nov ‘66 when, influenced by Sketchpad, Simula, the
design for the ARPAnet, the Burroughs B5000, and my background in Biology
and Mathematics, I thought of an architecture for programming. It was
probably in 1967 when someone asked me what I was doing, and I said: "It's
object-oriented programming".

The original conception of it had the following parts.

- I thought of objects being like biological cells and/or individual computers on
a network, only able to communicate with messages (so messaging came at
the very beginning -- it took a while to see how to do messaging in a
programming language efficiently enough to be useful).

- I wanted to get rid of data. The B5000 almost did this via its almost
unbelievable HW architecture. I realized that the cell/whole-computer metaphor
would get rid of data, and that "<-“ would be just another message token (it
took me quite a while to think this out because I really thought of all these
symbols as names for functions and procedures.

OOP to me means only messaging, local retention and protection and
hiding of state-process, and extreme late-binding of all things. It can
be done in Smalltalk and in LISP.

Object Oriented Defined
Alan Kay, Sept 14, 2016:
• Part of the problem here is that I made a mistake with how the term was coined — I should have

picked something else — in hindsight: “server-oriented programming”?
• For example, a “server” could choose to allow its encapsulation to be violated — e.g. by making

its services to closely resemble data structures acted on by procedures. Here, in my opinion, we
would be simulating quite the wrong kinds of things, and devolving back into weak and fragile
programming styles. (That is my view of what has mostly happened with “objects” — “real objects”
never showed up because most people wanted to retain their data oriented style, etc.)

• For example — today and tomorrow — we should be programming in terms of “requirements and
goals” that can manifest a workable system (possibly needing a super-computer).

• We should be able to optimize a system like this without touching the requirements and goals part,
etc. In other words, we want to devote most of our attention into “the whats” rather than “the
hows”, use most of our energy for design, and we’d like to “ship the design!” (that would be a good
slogan for the next few years).

Eric des Courtis, Jun 29, 2016:
• An object is simply a virtual server. In other words an encapsulated computer which uses

messages to communicate with other virtual or physical servers.
It's simple and brilliant. All other aspects of OOP are secondary.
He also said he believed every object should have an IP (sort of like a pointer).

Alan Kay’s Vision

The System
Object

2

Object
1

Object
4

Object
3

message

What is This OO Stuff, Anyway?

• OO is about simulating the real world in a
computer

• In the real world we interact with objects
everyday without thinking about how they work
or why

• We tell someone or something to do something
and it does it (mostly)

What do we know that a Cat and Dog can do?

Eat
Sleep
Meow
Scratch
Walk

Eat
Sleep
Speak
Chase cars
Fetch (thing)
Walk

What Cats and Dogs Can Do

Cats and Dogs, like all things, have behavior

name
weight
whiskerCount
length
napCount
dateLastMeal

name
weight
bonesCount
legCount
Owner
dateLastMeal

What Cats and Dogs Know

Cats and Dogs, like all things, know about their internal state

Bowser, Speak!

Bowser, Come here!

Bowser, Fetch Stick!

How We Interact with Dogs and Cats

• We send a message to a thing
and ask it to do something.

• We don’t know how it does what
we ask.

• Nor do we – as users - care.

How Dogs Respond to Our Message

• Objects are responsible for doing things
• Objects collaborate with other objects to perform tasks
• Object use their internal state to carry out the behavior

Walk Walk Step Lift

Solve a Problem Using Objects
Problem Domain: Create a Solitaire Engine
• You have been tasked with creating an “engine”

to play games of Solitaire and record the results
for later analysis

• What things do you typically work with in this
domain?

What Objects are Used?
In the Solitaire (Card Game) Domain we work with

• Card (e.g. Ace of Clubs)
• Deck of Cards (a Collection of individual Cards)
• Pile (of cards)
• Player (scores)
• Tableau (e.g. the main layout)

How are the Objects Used
The user of the system describes for us how the things will be used:
“To form the tableau, seven piles need to be created. Starting from left to right,
place the first card face up to make the first pile, deal one card face down for
the next six piles. Starting again from left to right, place one card face up on the
second pile and deal one card face down on piles three through seven. Starting
again from left to right, place one card face up on the third pile and deal one
card face down on piles four through seven. Continue this pattern until pile
seven has one card facing up on top of a pile of six cards facing down.
The remaining cards form the stock (or “hand”) pile and are placed above the
tableau.
When starting out, the foundations and waste pile do not have any cards.”

This scenario is called a Use Case. It is where Object Orientation starts. A Use
Case describes the objects that will be used to create the application. It
also describes how the objects will be used (their behavior).

How This Works with Objects
1. Get the next Card from the Deck
2. Add that Card to the Pile

Game
Application

New Game

Card

Deck

Pile

Start Game:
1. Zero out totals
2. Shuffle Deck of Cards
3. Get a Card and Add to the Next

Pile
4. Repeat until Piles are complete

How This Works with Objects
1. For each Pile, get the playable Card’s Suit and Color.
2. Is that card Transferable? If so, transfer it to the other

Pile.

Game
Application

Get Suit, Color and Value Card

Pile

Pile

Objects “Know” How to Do Things

• An object contains information about its internal state and what
behaviors it can perform:

• A Customer object can “tell you” its name and address

• A Home object can “tell you” its address, year built and type (single
family, barn, skyscraper)

• What can a Card object tell you?

• What can a Deck object tell you?

Objects “Know” How to Do Things (cont.)

Each object knows its
Suit and Rank

But, since each object
is different (has its
own data/state) the
values of the rank
and suit may be
differentCard

5 D

Card
J H

Card
A C

Deck

I am an
Ace of Clubs

I am a
5 of Diamonds

I am a
Jack of Hearts

The Deck Object: From the User’s
View

• The user sees the Deck object as helping to solve a problem

• The user only needs the functions of a Deck that help to solve the problem

(abstraction)

• The same Deck may be used differently to solve different problems in

different applications. How the objects are used (called a Use Case)

determines what behaviors must be created for them.

– One application needs to be able to deal from the top and bottom of the deck

– One application may need to sort the Deck by suit, then rank within suit

– A different application may need to sort the Deck based on value without regard

to suit

The Deck Object in Use
Application 1 Application 2 Application 3

Deck

Sort based
on Value

Deck

Deal a
Card from

Top or
Bottom

Deck

Sort based
on Suit, then
Value within

Suit

From the Deck Designer’s View
The designer must use variables (other objects) to represent the policy object’s state:

§ String deckType = “Rummy”

§ int totalCards = 52

§ int cardsRemaining = 52

• What happens if we decide to change the implementation and use a different name or

way to represent the value for cardsRemaining? Or read it from a database or

Web Service?

• If the implementation (data structure and algorithm) is visible to the user of the object:

§ Every place that referred to the Deck’s cardsRemaining variable would have

to be changed, recompiled, and debugged

§ Sometimes called a side effect

• If the implementation (data structure and algorithm) is hidden from the user:

§ If the implementation changes, the user of the object is not impacted

Which is better: more flexible, easier to maintain and enhance?

Abstraction

• The Problem Domain determines what subset of behaviors and

information you need to capture

• Different problem domains require different behaviors, even in the

same object

• Notice how the airplane’s behavior is dependent on how it is used

• Ex: Given a Airplane Object

§ How does an Airport application use the Airplane object?

§ How does a Travel Agent application use the Airplane object ?

§ How does an Airline application use the Airplane object?

Procedural Programming

• Procedural programs put the data structure into the main

program and call a function and pass the data structure

• What happens when the data structure changes?

Main Program

Card
suit
rank
faceUp

Card Library

Compare(c1,c2)

Compare(card1, card2)

Access Databases
• The problem is more evident with databases

• If all programs directly access tables, what happens when

the table structure changes ?

A B C D

Procedural vs. OO
Card Library

Compare(card1, card2)
Data exposed
In code:
Card

suit
rank
faceUp

Main Program

Card Class

suit
rank

suit()
rank()
isFaceUp()
Compare(anotherCard)

suit = Spade
rank = Ace
faceup = true

suit = Heart
rank = Jack
faceup = true

Card
Object
“Instance”

Card
Object
“Instance”

Main Program

Indirect access to
data encapsulated
behind Object References

Object
Reference

Object
Reference

Objects and Classes

What do these objects all have in common?
• They are all types of Card objects
• They have the same attributes (suit, rank, faceUp)
• They have the same behavior: they can all tell you their suit,

rank and if they are face up

We use a Class to specify the design of our objects
An Object is a specific instance of a Class at runtime
Ex: Table and row
Ex: Recipe and meal
Ex: Blueprint and building
Ex: Integer and 23

suit = Club
rank = 2
faceUp = true

suit = Heart
rank = Jack
faceUp = false

suit = Diamond
rank = Queen
faceUp = true

What is a Class

A template (factory) for creating
new objects:
• the name of the class
• the attributes and their types
• the methods, their arguments,

return types and the code to
implement them

getSuit:String
getRank:int
isFaceUp:Boolean
Compare(aCard): int

Card Class
suit: String
rank: int
faceUp: boolean

• At	runtime	an	object	is	created	in	memory.
• Memory	is	allocated	for	its	attributes.
• Each	object	has	a	unique	object	reference,	a	
pointer	to	that	object	in	memory.
•Each	object	has	a	pointer	to	its	Class	Definition.

Card aCard = new Card();
aCard.getSuit();

What is an Object? Card Class

suit
rank
faceUp

getSuit:String
getRank:int
isFaceUp:Boolean
Compare(aCard): int

suit = Club
rank = 2
faceUp = true

suit = Heart
rank = Jack
faceUp = false

suit = Diamond
rank = Queen
faceUp = true

Encapsulation and Data Hiding

• When an object is asked to do something, the result may
be a change in its state
Ex: If the Card is told it has been turned over, its state

has changed (it now the opposite of what it was: face
up or down)

• The only way an object’s state can be changed is by
asking it to do something

• It could be something simple:
anEmployee.setName(“Joe”)

• Or something complex:
anEmployee.completeReview()

• This is also called encapsulating the data

“Everything is an Object”
In OO, all data is wrapped by the methods of a class.
There is literally no way to “see” the data:

Retrieve Salary value:
Salary mySalary = emp.getSalary()

Compare:
if(mySalary.greaterThan(anotherEmp.getSalary()))
See! No data! Just compare salary objects

Calculation:
mySalary().increase(pctInc)
See! No data! – it knows how to increase its salary

Display:
System.out.println(aSalary.toString())
Returns a string object- println will display the characters of the

string one character at a time on the output device

“Everything is an Object”

“But, what if I need to “get” my salary as a floating point
number or string or array of chars or as XML or JSON?”

Salary Class Methods:

• asFloat

• asString

• asCharArray

• asXML

• asJSON

We Never See Implementation

• In real life implementation is often hidden
• If you ask your neighbor
“How much money do you have”

• You do not know how they come up with the right
answer

• What other things work like this?

An Object’s Public “Face”

• The functions and
subroutines defined for an
object are its public face
(“interface”)

• Many things can have the
same interface, yet
implement it differently

ATM

“How much
money do
you have?”

Person

Robot

Messages

• One object tells another object to do something by sending it a
message

• The receiver determines which method implements that message
• The same message can result in different behavior on different

objects

Method Invocation

Turn (right)

Sender Receiver

Inheritance
• What if you had several types of Decks

§ Standard (52)
§ Piquet (32 - 2-6 removed)
§ Pinochle (48)

• Imagine you could share behavior from the more general Deck
§ Shuffle
§ Deal

• Each type of Deck could implement shuffle differently
• Why might this be a cool thing?

Deck

Standard Piquet Pinochle

shuffle

shuffle shuffle shuffle

With objects, you can give the same name to services that may work
differently in different objects but perform the same basic function

How to Work with Different Types

• In Procedural languages, you would need an IF..ELSE
statement to determine the type and call the correct
function:

IF (is Standard) call shuffleStandard (Standard)
ELSE (is Piquet) call shufflePiquet (Piquet)

ELSE (is Pinochle) call shufflePinochle(Pinochle)

Polymorphism
Object systems move the IF…ELSE to the runtime

Virtual Machine:

Deck d = DeckFactory.createNewDeck(type);
d.shuffle();

At runtime, the system asks d “What type of object are
you”

Based on what d answers, the appropriate shuffle()
function is called

This ability is called polymorpism

Late binding, or dynamic binding, is a computer programming mechanism in
which the method being called upon an object or the function being called with
arguments is looked up by name at runtime. - Wikipedia

How Do We Use Classes in Java
public class DeckTester{

public static void main(String[] args){

StandardDeck theDeck = new StandardDeck();
Card aCard = new Card(“Club”, “A”);

theDeck.add(aCard);

System.out.println(theDeck.dealACard().getSuit());

if (theDeck.cardsRemaining() > 10)…
}

Quiz

What is a Method?
What is an Attribute?
What is an Object?
What is a Class?
What is Inheritance?
What is Abstraction?
What is Encapsulation?
What is Polymorphism?

